Citation: HE Wei, ZOU Jiajia, LU Dongwei, CHENG Hui, LIN Cuiwu. Synthesis of Two L-Histidine Amide Derivatives and the Interaction Mechanism with Human Serum Albumin[J]. Chinese Journal of Applied Chemistry, ;2017, 34(10): 1150-1160. doi: 10.11944/j.issn.1000-0518.2017.10.160473 shu

Synthesis of Two L-Histidine Amide Derivatives and the Interaction Mechanism with Human Serum Albumin

  • Corresponding author: LIN Cuiwu, cuiwulin@163.com
  • Received Date: 24 November 2016
    Revised Date: 6 February 2017
    Accepted Date: 10 March 2017

    Fund Project: the Guangxi Natural Science Foundation of China 2013GXNSFDA019005the National Natural Science Foundation of China 21362001Supported by the National Natural Science Foundation of China(No.21362001), the Guangxi Natural Science Foundation of China(No.2013GXNSFDA019005)

Figures(10)

  • L-Histidine has excellent affinity for biological organism. Its derivatives by structural modification may possess high pharmacological activity and bio-availability. In this work, two L-histidineamide derivatives were designed and synthesized by the reaction of L-histidine with trans-cinnamic acid and p-methoxycinnamic acid. Their structures were characterized by infrared, mass spectrometry, and nuclear magnetic resonance. The interaction mechanism of derivatives and human serum albumin(HSA) was investigated by molecular operating environment(MOE) molecular docking, fluorescence spectroscopy, synchronous fluorescence spectroscopy(SFS) and ultraviolet-visible(UV-Vis) absorption spectroscopy. The results of MOE molecular docking shows that the two derivatives exist in the hydrophobic pocket of subdomain ⅡA(site Ⅰ) of HSA under the action of van der Waals force and hydrophobic effect, with the simulation binding energy are -13.82 and -16.25 kcal/mol, respectively. The fluorescence quenching results show that the derivatives can interact with HSA and form new ground-state complexes and the fluorescence quenching process is a static quenching procedure. The binding of HSA to derivatives driven by van der Waals force was found from the thermodynamic parameters, and the binding equilibrium constants at different temperatures(300 K, 305 K, and 310 K) are 1.773×104, 6.354×103, 1.260×103, 5.314×104, 4.614×103, 1.420×103, respectively. The SFS characterization shows that the secondary structure of HSA has been changed by derivatives. Combining the results of UV-Vis spectra, it is obviously that under physiological conditions in vitro, the interaction between derivatives with HSA produces static quenching and conformational effects to the internal fluorescence of HSA through van der Waals force, which is consistent with the prediction of molecular docking, thus providing a reference for the further development of histidine amide derivatives research.
  • 加载中
    1. [1]

      YANG Feng, LIANG Hong. Structure of Human Serum Albumin and Its Complexes[J]. Prog Chem, 2013,25(4):530-538.  

    2. [2]

      LIANG Jin, FENG Suling. Study on the Interaction Between Ambroxol Hydrochloride and Human Serum Albumin by Spectroscopy and Molecular Docking[J]. Spectrosc Spectr Anal, 2011,31(4):1020-1024.  

    3. [3]

      Noguchi T, Inoue Y, Tang X S. Hydrogen Bonding Interaction Between the Primary Quinone Acceptor Qa and a Histidine Side Chain in Photosystem Ⅱ as Revealed by Fourier Transform Infrared Spectroscopy[J]. Biochemistry, 1999,38(1):399-403. doi: 10.1021/bi982294v

    4. [4]

      Mathieu V, Van Den Berge E, Ceusters J. New 5-Aryl-1H-Imidazoles Display in Vitro Antitumor Activity Against Apoptosis-Resistant Cancer Models, Including Melanomas, Through Mitochondrial Targeting[J]. J Med Chem, 2013,56(17):6626-6637. doi: 10.1021/jm400287v

    5. [5]

      Petitpas I, Bhattacharya A A, Twine S. Crystal Structure Analysis of Warfarin Binding to Human Serum Albumin Anatomy of Drug Site Ⅰ[J]. J Biol Chem, 2001,276(25):22804-22809. doi: 10.1074/jbc.M100575200

    6. [6]

      Kheder N A. Hydrazonoyl Chlorides as Precursors for Synthesis of Novel Bis-Pyrrole Derivatives[J]. Molecules, 2016,21(3)326. doi: 10.3390/molecules21030326

    7. [7]

      WANG Cunxin, CHANG Shan, GONG Xinqi. Progress in the Scoring Functions of Protein-Protein Docking[J]. Acta Phys Chim Sin, 2012,28(4):751-758.  

    8. [8]

      YU Yonghui. Study on Interactions and Recognition Between Ligand and Protein[D]. Beijing:Beijing University of Technology, 2003(in Chinese). 

    9. [9]

      Li D, Hong D, Guo H. Probing the Influences of Urea on the Interaction of Sinomenine with Human Serum Albumin by Steady-State Fluorescence[J]. J Photochem Photobiol B, 2012,117(117C):126-131.  

    10. [10]

      Pacheco M E, Bruzzone L. Synchronous Fluorescence Spectrometry:Conformational Investigation or Inner Filter Effect[J]. J Lumin, 2013,137(9):138-142.  

    11. [11]

      Xie M X, Long M, Liu Y. Characterization of the Interaction Between Human Serum Albumin and Morin[J]. Biochim Biophys Acta, 2006,1760(8):1184-1191. doi: 10.1016/j.bbagen.2006.03.026

    12. [12]

      Yan Z Y, Lin X F, Yuzhu H U. Interaction Between Gatifloxacin and Bovine Serum Albumin[J]. J Chinese Pharm Sci, 2005,14(1):33-37.  

    13. [13]

      Haleem Ph.D., Issaq J. Capillary Electrochromatography and Pressurized Flow Capillary Electrochromatography[J]. Instrum Sci Technol, 2000,54(5):209-210.

    14. [14]

      Wang C, Wu Q H, Li C R. Interaction of Tetrandrine with Human Serum Albumin:A Fluorescence Quenching Study[J]. Anal Sci, 2007,23(4)429. doi: 10.2116/analsci.23.429

    15. [15]

      Du C R, Luo X, Wei J R. Preparation of (2E)-3-(4'-Halophenyl)prop-2-enoyl Sulfachlorpyridazine Sodium Salts and Their Interaction with Bovine Serum Albumin by Fluorescence Spectroscopy[J]. Chem Res Chinese Univ, 2013,29(5):854-860. doi: 10.1007/s40242-013-3128-1

    16. [16]

      ZHANG Qiong, SONG Yumin, LIU Jiacheng. Interaction Between Complexes of Transition Metal with Warfarin and Human Serum Albumin[J]. Chinese J Inorg Chem, 2011,27(9):1772-1780.  

    17. [17]

      FENG Xiaoqiang, FU Guoqing, LI Xiaofang. Interaction of Rare Earth with Bovine Serum Albumin[J]. Chinese J Lumin, 2011,32(2):205-209.  

    18. [18]

      ZHANG Yong, ZHANG Guizhu, WANG Yuemei. Studies of Interaction of Mitomycin C and Serum Album in by Spectrum Method[J]. J Anal Sci, 2000,16(6):445-449.  

    19. [19]

      WU Jinxiu, LI Mei, LIU Shaogang. Study on Interaction of Y3+ and Bovine Serum Albumin by Spectrometry[J]. Chinese J Lumin, 2012,33(10):1153-1159.  

    20. [20]

      WANG Jian, ZHENG Xuefang, CAO Hongyu. Synthesis of 4-Thio-5-iodouridine and the Interaction Between It and Human Serum Albumin[J]. Chinese J Lumin, 2013,34(3):361-368.  

    21. [21]

      Liu Y, Xie M X, Kang J. Studies on the Interaction of Total Saponins of Panax Notoginseng and Human Albumin by Fourier Transform Infrared Spectroscopy[J]. Spectrochim Acta Part A, 2003,59(12):2747-2758. doi: 10.1016/S1386-1425(03)00055-6

    22. [22]

      Mandal P, Bardhan M, Ganguly T. A Detailed Spectroscopic Study on the Interaction of Rhodamine 6g with Human Hemoglobin[J]. J Photochem Photobiol B, 2010,99(2):78-86. doi: 10.1016/j.jphotobiol.2010.02.009

    23. [23]

      XU Li. Studies on Solution Thermodynamics of Protein and Its Model Molecules[D]. Zhengjiang University, 2004(in Chinese). 

    24. [24]

      DU Chuanrong, LU Dongwei, SHI Kang. Synthesis of Three Cinnamamide Derivatives and Their Interaction Mechanism with Human Serum Albumin[J]. Chinese J Lumin, 2015,36(11):1342-1352.  

  • 加载中
    1. [1]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    2. [2]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    3. [3]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    4. [4]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    5. [5]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    8. [8]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    9. [9]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    10. [10]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    11. [11]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    16. [16]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(0)
  • Abstract views(533)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return