Citation: WANG Yi'nan, HAN Xiaojun. Progress on Synthesis of Hollow Nanostructure by Soft-templates[J]. Chinese Journal of Applied Chemistry, ;2017, 34(8): 868-876. doi: 10.11944/j.issn.1000-0518.2017.08.170090 shu

Progress on Synthesis of Hollow Nanostructure by Soft-templates

  • Corresponding author: HAN Xiaojun, hanxiaojun@hit.edu.cn
  • Received Date: 28 March 2017
    Revised Date: 28 April 2017
    Accepted Date: 27 May 2017

    Fund Project: the State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology No.2017DX05the National Natural Science Foundation of China No.21528501Supported by the National Natural Science Foundation of China(No.21528501), the State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology(No.2017DX05)

Figures(6)

  • Hollow nanostructures possess the properties of high loading, low density and large specific surface area, therefore they find a lot of applications in many fields. The synthesis of hollow nanostructure by soft template method has the advantages of simplicity and structure controllability. At present, the most commonly used templates include microemulsion templates, micelle/vesicle templates and bubble templates. The hollow nanostructure is obtained by nanoparticle assembly on these soft templates via electrostatic adsorption, hydrogen bonding and interfacial reaction. The progresses on synthesis of hollow nanostructures by soft template are summarized and perspected.
  • 加载中
    1. [1]

      Caruso F, Caruso R A, Möhwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science, 1998,282(5391):1111-1114. doi: 10.1126/science.282.5391.1111

    2. [2]

      Wang Y, Ma S, Su Y. Palladium Nanotubes Formed by Lipid Tubule Templating and Their Application in Ethanol Electrocatalysis[J]. Chem Eur J, 2015,21(16):6084-6089. doi: 10.1002/chem.v21.16

    3. [3]

      Wang Y, Ma S, Li Q. Hollow Platinum Nanospheres and Nanotubes Templated by Shear Flow-Induced Lipid Vesicles and Tubules and Their Applications on Hydrogen Evolution[J]. ACS Sustain Chem Eng, 2016,4(7):3773-3779. doi: 10.1021/acssuschemeng.6b00444

    4. [4]

      Chun J, Lee K Y, Kang C. Embossed Hollow Hemisphere-Based Piezoelectric Nanogenerator and Highly Responsive Pressure Sensor[J]. Adv Funct Mater, 2014,24(14):2038-2043. doi: 10.1002/adfm.v24.14

    5. [5]

      Zhao W, Lang M, Li Y. Fabrication of Uniform Hollow Mesoporous Silica Spheres and Ellipsoids of Tunable Size through a Facile Hard-Templating Route[J]. J Mater Chem, 2009,19(7):2778-2783.

    6. [6]

      Singh R K, Kim T H, Mahapatra C. Preparation of Self-Activated Fluorescence Mesoporous Silica Hollow Nanoellipsoids for Theranostics[J]. Langmuir, 2015,31(41):11344-11352. doi: 10.1021/acs.langmuir.5b03436

    7. [7]

      Zhang H, Zhou Y, Li Y. Synthesis Of Hollow Ellipsoidal Silica Nanostructures Using a Wet-Chemical Etching Approach[J]. J Colloid Interface Sci, 2012,375(1):106-111. doi: 10.1016/j.jcis.2012.02.046

    8. [8]

      Feng Y, Yu X Y, Paik U. Nickel Cobalt Phosphides Quasi-Hollow Nanocubes as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Solution[J]. Chem Commun, 2016,52(5):1633-1636.  

    9. [9]

      Guan X, Nai J, Zhang Y. CoO Hollow Cube/Reduced Graphene Oxide Composites with Enhanced Lithium Storage Capability[J]. Chem Mater, 2014,26(5):5958-5964.  

    10. [10]

      Zhou L, Zhao D, Lou X W. Double-Shelled CoMn2O4 Hollow Microcubes as High-Capacity Anodes for Lithium-Ion Batteries[J]. Adv Mater, 2012,24(8):745-748.

    11. [11]

      Yu H, Zhang Q, Joo J B. Porous Tubular Carbon Nanorods with Excellent Electrochemical Properties[J]. J Mater Chem A, 2013,1(9):12198-12205.  

    12. [12]

      Lv J, Kako T, Li Z. Synthesis and Photocatalytic Activities of NaNbO3 Rods Modified by In2O3 Nanoparticles[J]. J Phys Chem C, 2010,114(10):6157-6162.

    13. [13]

      Ren Y, Chiam S Y, Chim W K. Diameter Dependence of the Void Formation in the Oxidation of Nickel Nanowires[J]. Nanotechnology, 2011,22(23):235606-235612. doi: 10.1088/0957-4484/22/23/235606

    14. [14]

      Yang J, Cho M, Lee Y. Synthesis of Hierarchical Ni(OH)2 Hollow Nanorod via Chemical Bath Deposition and Its Glucose Sensing Performance[J]. Sen Actuators B Chem, 2016,222(23):674-681.

    15. [15]

      Sun Y, Xia Y. Triangular Nanoplates of Silver: Synthesis, Characterization, and Use as Sacrificial Templates for Generating Triangular Nanorings of Gold[J]. Adv Mater, 2003,15(69):695-699.

    16. [16]

      Zhang H, Zhai C, Wu J. Cobalt Ferrite Nanorings:Ostwald Ripening Dictated Synthesis and Magnetic Properties[J]. Chem Commun, 2008,111(41):5648-5650.  

    17. [17]

      Qi J, Lai X, Wang J. Multi-Shelled Hollow Micro/Nanostructures[J]. Chem Soc Rev, 2015,44(11):6749-6773.

    18. [18]

      Jiang K, Ma S, Wang Y. Salt-Induced Square Prism Pd Microtubes and Their Ethanol Electrocatalysis Properties[J]. Appl Surf Sci, 2017,403(6):677-681.

    19. [19]

      Su Y, Ma S, Zhao X. Template-Free Synthesis of Inorganic Hollow Spheres at Water/"Water-Brother" Interfaces as Fenton-like Reagents for Water Treatment[J]. J Environ Sci, 2017,55:331-338. doi: 10.1016/j.jes.2016.10.012

    20. [20]

      Zhang Q, Wang W, Goebl J. Self-Templated Synthesis of Hollow Nanostructures[J]. Nano Today, 2009,4(6):494-507. doi: 10.1016/j.nantod.2009.10.008

    21. [21]

      Mason T G, Wilking J N, Meleson K. Nanoemulsions:Formation, Structure, and Physical Properties[J]. J Phys Condens Mattter, 2006,18(15):635-638.

    22. [22]

      Su Y, Zong W, Zhao X. Inorganic Microcapsules Mineralized at the Interface of Water Droplets in Ethanol Solution and Their Application as Drug Carriers[J]. RSC Adv, 2015,5(10):82247-82251.  

    23. [23]

      Zoldesi C I, Imhof A. Synthesis of Monodisperse Colloidal Spheres, Capsules, and Microballoons by Emulsion Templating[J]. Adv Mater, 2005,17(23):924-928.

    24. [24]

      Peng B, Chen M, Zhou S. Fabrication of Hollow Silica Spheres Using Droplet Templates Derived from a Miniemulsion Technique[J]. J Colloid Interface Sci, 2008,321(11):67-73.  

    25. [25]

      Wang B, Chen J S, Wu H B. Quasiemulsion-Templated Formation of α-Fe2O3 Hollow Spheres with Enhanced Lithium Storage Properties[J]. J Am Chem Soc, 2011,133(25):17146-17148.

    26. [26]

      Wennerström H, Söderman O, Olsson U. Macroemulsions versus Microemulsions[J]. Colloid Surf A, 1997,123(51):13-26.  

    27. [27]

      Tian G, Chen Y, Zhou W. Facile Solvothermal Synthesis of Hierarchical Flower-like Bi2MoO6 Hollow Spheres as High Performance Visible-Light Driven Photocatalysts[J]. J Mater Chem, 2011,21(21):887-892.

    28. [28]

      Cao A, Monnell J D, Matranga C. Hierarchical Nanostructured Copper Oxide and Its Application in Arsenic Removal[J]. J Phys Chem C, 2007,111(10):18624-18628.  

    29. [29]

      Roney A B, Space B, Castner E W. A Molecular Dynamics Study of Aggregation Phenomena in Aqueous n-Propanol[J]. J Phys Chem B, 2004,108(14):7389-7401.

    30. [30]

      Yu X L, Cao C B, Zhu H S. Nanometer-Sized Copper Sulfide Hollow Spheres with Strong Optical-Limiting Properties[J]. Adv Funct Mater, 2007,17(31):1397-1401.

    31. [31]

      Bourret G R, Lennox R B. 1D Cu(OH)2 Nanomaterial Synthesis Templated in Water Microdroplets[J]. J Am Chem Soc, 2010,132(45):6657-6659.

    32. [32]

      Buchold D H M, Feldmann C. Nanoscale γ-AlO(OH) Hollow Spheres:Synthesis and Container-Type Functionality[J]. Nano Lett, 2007,7(11):3489-3492. doi: 10.1021/nl072074f

    33. [33]

      Leidinger P, Popescu R, Gerthsen D. Nanoscale La(OH)3 Hollow Spheres and Fine-Tuning of Its Outer Diameter and Cavity Size[J]. Small, 2010,6(5):1886-1891.

    34. [34]

      Collins A M, Spickermann C, Mann S. Synthesis of Titania Hollow Microspheres Using Non-Aqueous Emulsions[J]. J Mater Chem, 2003,13(5):1112-1114. doi: 10.1039/b301183f

    35. [35]

      Leidinger P, Popescu R, Gerthsen D. Nanoscale Ag2S Hollow Spheres and Ag2S Nanodiscs Assembled to Three-Dimensional Nanoparticle Superlattices[J]. Chem Mater, 2013,25(5):4173-4180.

    36. [36]

      Wei C, Wang L, Dang L. Bottom-Up-then-Up-Down Route for Multi-level Construction of Hierarchical Bi2S3 Superstructures with Magnetism Alteration[J]. Sci Rep-UK, 2015,5(2):10599-10602.

    37. [37]

      Liu J, Kim A Y, Wang L Q. Self-assembly in the Synthesis of Ceramic Materials and Composites[J]. Adv Colloid Interface, 1996,69(21):131-180.

    38. [38]

      Jung M, Hubert D, Bomans P. A Topology Map for Novel Vesicle Polymer Hybrid Architectures[J]. Adv Mater, 2000,12(89):210-213.

    39. [39]

      Zurmühl C, Popescu R, Gerthsen D. Microemulsion-based Synthesis of Nanoscale TiO2 Hollow Spheres[J]. Solid State Sci, 2011,13(5):1505-1509.

    40. [40]

      Hotz J, Meier W. Vesicle-Templated Polymer Hollow Spheres[J]. Langmuir, 1998,14(76):1031-1036.

    41. [41]

      Zheng X, Xie Y, Zhu L. Formation of Vesicle-Templated CdSe Hollow Spheres in an Ultrasound-Induced Anionic Surfactant Solution[J]. Ultrason Sonochem, 2002,9(31):311-316.  

    42. [42]

      Zhao Q, Gao Y, Bai X. Facile Synthesis of SnO2 Hollow Nanospheres and Applications in Gas Sensors and Electrocatalysts[J]. Eur J Inorg Chem, 2006,2006(56):1643-1648.

    43. [43]

      Hubert D H, Jung M, Frederik P. Vesicle-Directed Growth of Silica[J]. Adv Mater, 2000,12(42):1286-1290.  

    44. [44]

      Li W, Xu P, Zhou H. Advanced Functional Nanomaterials with Microemulsion Phase[J]. Sci China Technol Sci, 2012,55(61):387-416.

    45. [45]

      Khanal A, Inoue Y, Yada M. Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core-Shell-Corona Structure[J]. J Am Chem Soc, 2007,129(29):1534-1535.

    46. [46]

      Pang X, Zhao L, Han W. A General and Robust Strategy for the Synthesis of Nearly Monodisperse Colloidal Nanocrystals[J]. Nat Nano, 2013,8(10):426-431.

    47. [47]

      Geng J, Zhu J J, Lu D J. Hollow PbWO4 Nanospindles via a Facile Sonochemical Route[J]. Inorg Chem, 2006,45(61):8403-8407.

    48. [48]

      Hentze H P, Raghavan S R, McKelvey C A. Silica Hollow Spheres by Templating of Catanionic Vesicles[J]. Langmuir, 2003,19(51):1069-1074.

    49. [49]

      Kijima T, Yoshimura T, Uota M. Noble-Metal Nanotubes (Pt, Pd, Ag) from Lyotropic Mixed-Surfactant Liquid-Crystal Templates[J]. Angew Chem, 2004,116(16):230-234.

    50. [50]

      Fuhrhop J H, Wang T. Bolaamphiphiles[J]. Chem Rev, 2004,104(31):2901-2938.

    51. [51]

      Landsmann S, Luka M, Polarz S. Bolaform Surfactants with Polyoxometalate Head Groups and Their Assembly into Ultra-Small Monolayer Membrane Vesicles[J]. Nat Commun, 2012,3(19):1299-1305.

    52. [52]

      Fan X, Zhang Z, Li G. Attachment of Solid Particles to Air Bubbles in Surfactant-Free Aqueous Solutions[J]. Chem Eng Sci, 2004,59(44):2639-2645.

    53. [53]

      Han Y S, Hadiko G, Fuji M. A Novel Approach to Synthesize Hollow Calcium Carbonate Particles[J]. Chem Lett, 2004,34(71):152-153.

    54. [54]

      Peng Q, Dong Y, Li Y. ZnSe Semiconductor Hollow Microspheres[J]. Angew Chem In Ed, 2003,42(13):3027-3030.

    55. [55]

      Rana R K, Mastai Y, Gedanken A. Acoustic Cavitation Leading to the Morphosynthesis of Mesoporous Silica Vesicles[J]. Adv Mater, 2002,14(78):1414-1418.

    56. [56]

      Shchukin D G, Köhler K, Möhwald H. Gas-Filled Polyelectrolyte Capsules[J]. Angew Chem In Ed, 2005,44(13):3310-3314.  

    57. [57]

      Deng C, Hu H, Ge X. One-Pot Sonochemical Fabrication of Hierarchical Hollow CuO Submicrospheres[J]. Ultrason Sonochem, 2011,18(81):932-937.

    58. [58]

      Zhang L, Sun Y, Jiu H. Bubble Template Synthesis of Hollow CeO2 Microspheres Through a Solvothermal Approach[J]. IET Micro Nano Lett, 2011,6(19):22-25.

    59. [59]

      Gao J, Liang G, Cheung J S. Multifunctional Yolk-Shell Nanoparticles:A Potential MRI Contrast and Anticancer Agent[J]. J Am Chem Soc, 2008,130(32):11828-11833.

    60. [60]

      Yan C, Xue D. Polyhedral Construction of Hollow ZnO Microspheres by CO2 Bubble Templates[J]. J Alloy Compd, 2007,431(65):241-245.

    61. [61]

      Guo L, Liang F, Wen X. Uniform Magnetic Chains of Hollow Cobalt Mesospheres from One-Pot Synthesis and Their Assembly in Solution[J]. Adv Funct Mater, 2007,17(2):425-430.

    62. [62]

      Mozafari M, Moztarzadeh F, Seifalian A M. Self-assembly of PbS Hollow Sphere Quantum Dots via Gas-Bubble Technique for Early Cancer Diagnosis[J]. J Lumin, 2013,133(12):188-193.

    63. [63]

      Yang J, Sasaki T. Synthesis of CoOOH Hierarchically Hollow Spheres by Nanorod Self-Assembly Through Bubble Templating[J]. Chem Mater, 2008,20(11):2049-2056.  

    64. [64]

      Liu Y, Li C, Zhang H. One-Pot Hydrothermal Synthesis of Highly Monodisperse Water-Dispersible Hollow Magnetic Microspheres and Construction of Photonic Crystals[J]. Chem Eng J, 2015,259(54):779-786.  

    65. [65]

      Zuo X, Chang K, Zhao J. Bubble-Template-Assisted Synthesis of Hollow Fullerene-like MoS2 Nanocages as a Lithium Ion Battery Anode Material[J]. J Mater Chem A, 2016,4(9):51-58.

    66. [66]

      Chen X, Wang Z, Wang X. Synthesis of Novel Copper Sulfide Hollow Spheres Generated from Copper(Ⅱ)-Thiourea Complex[J]. J Cryst Growth, 2004,263(31):570-574.

    67. [67]

      Lv R, Yang G, Dai Y. Self-produced Bubble-Template Synthesis of La2O3:Yb/Er@Au Hollow Spheres with Markedly Enhanced Luminescence and Release Properties[J]. Cryst Eng Comm, 2014,16(19):9612-9621.

    68. [68]

      Chen X Y, Zhang Z J, Li X X. Hollow Magnetite Spheres:Synthesis, Characterization, and Magnetic Properties[J]. Chem Phys Lett, 2006,422(15):294-298.

    69. [69]

      Fei J B, Cui Y, Yan X H. Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment[J]. Adv Mater, 2008,20(7):452-456.  

    70. [70]

      Dong Y, Chui Y, Yang X. A. Facile Synthesis of Hollow Mesoporous CoFe2O4 Nanospheres and Graphene Composites as High-Performance Anode Materials for Lithium-Ion Batteries[J]. Chem Electro Chem, 2015,2(2):1010-1018.  

    71. [71]

      Zhang W, Hou X, Lin Z. Hollow Microspheres and Nanoparticles MnFe2O4 as Superior Anode Materials for Lithium Ion Batteries[J]. J Mater Sci-Mater Electron, 2015,26(25):9535-9545.

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    4. [4]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    11. [11]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    12. [12]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    13. [13]

      Qin Li Ziyao Jia Ye Chen Mingze Ma Lin Li Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035

    14. [14]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    15. [15]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    18. [18]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    19. [19]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(23)
  • Abstract views(2219)
  • HTML views(545)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return