Citation: ZHENG Xingwen, GONG Min, CHEN Shilin. Corrosion Inhibition of Q235 Steel by Moxifloxacin in Hydrochloric Acid Solution[J]. Chinese Journal of Applied Chemistry, ;2017, 34(8): 955-964. doi: 10.11944/j.issn.1000-0518.2017.08.170039 shu

Corrosion Inhibition of Q235 Steel by Moxifloxacin in Hydrochloric Acid Solution

  • Corresponding author: ZHENG Xingwen, zxwasd@126.com
  • Received Date: 20 February 2017
    Revised Date: 5 April 2017
    Accepted Date: 24 May 2017

    Fund Project: the Open Funds of Material Corrosion and Protection Key Laboratory of Sichuan Province No.2016CL03Supported by Talent Project of Sichuan University of Science & Engineering(No.2016RCL11), the Open Funds of Material Corrosion and Protection Key Laboratory of Sichuan Province(No.2016CL03)Talent Project of Sichuan University of Science & Engineering No.2016RCL11

Figures(11)

  • In order to develop new environment-friendly corrosion inhibitors, the corrosion inhibition of Q235 steel by moxifloxacin in 1 mol/L HCl solution and its mechanism were investigated using electrochemical measurements, mass loss method and quantum chemistry calculation. The results reveal that moxifloxacin is an effective mixed-type inhibitor with a predominantly cathodic action for the corrosion of Q235 steel in HCl solution. The inhibition efficiency increases with increased concentration of the inhibitor, but decreases with incremental temperature. The adsorption of moxifloxacin on steel surface is a spontaneous process, and obeys the Langmuir isotherm as well as the El-Awady thermodynamic-kinetic model. Accordingly, the thermodynamic and kinetic parameters were calculated and discussed. Moreover, quantum chemistry calculation was employed to give further insight into the inhibition mechanism of moxifloxacin, and the results showed that the corrosion inhibition of moxifloxacin was caused by physical adsorption and chemical adsorption.
  • 加载中
    1. [1]

      Gece G. Drugs:A Review of Promising Novel Corrosion Inhibitors[J]. Corros Sci, 2011,53(12):3873-3898. doi: 10.1016/j.corsci.2011.08.006

    2. [2]

      ZHENG Qingsi. Overview of the Clinical Application of Moxifloxacin Hydrochloride[J]. Acta Med Sin, 2014,27(1):195-197.  

    3. [3]

      LU Dingqiang, WANG Weibao, LING Youquan. Progress in Synthesis and Applications of Moxifloxacin Hydrochloride[J]. Mod Chem Ind, 2014,34(2):33-37.  

    4. [4]

      YAN Yin, LIU Ruiquan. Synthesis of Aryloxymethyl Imidazolinium Quaternary Ammonium Salt and Its Evaluation as a Corrosion Inhibitor[J]. Chinese J Appl Chem, 2014,31(7):852-859.  

    5. [5]

      WEI Jian, XIE Bin, LAI Chuan. Synthesis, Characterization and Corrosion Inhibition of N, N-Diethylammonium O, O'-(2-Methyl-2, 4-pentylene) Dithiophosphate[J]. Chinese J Appl Chem, 2016,33(2):190-199. doi: 10.11944/j.issn.1000-0518.2016.02.150219 

    6. [6]

      LI Xianghong, DENG Shuduan, FU Hui. Corrosion Inhibition of 2-Aminopyrimidine for Steel in Hydrochloric Acid Media[J]. Chinese J Appl Chem, 2012,29(2):209-215.  

    7. [7]

      Zheng X, Zhang S, Li W. Investigation of 1-Butyl-3-Methyl-1H-menzimidazolium Iodide as Inhibitor for Mild Steel in Sulfuric Acid Solution[J]. Corros Sci, 2014,80(3):383-392.

    8. [8]

      Zheng X, Zhang S, Gong M. Experimental and Theoretical Study on the Corrosion Inhibition of Mild Steel by 1-Octyl-3-methylimidazolium L-Prolinate in Sulfuric Acid Solution[J]. Ind Eng Chem Res, 2014,53(42):16349-16358. doi: 10.1021/ie502578q

    9. [9]

      SU Tiejun, LI Kehua, LUO Yunbai. Inhibition Behavior of 1-Phenylaminomethylbenzimidazole for Mild Steel in Hydrochloric Acid[J]. Chinese J Appl Chem, 2015,32(4):464-471. doi: 10.11944/j.issn.1000-0518.2015.04.140292 

    10. [10]

      LI Mingli, LIU Dan, CAO Shuyun. Corrosion Inhibition of Q235 Steel in HCl Solution by Brönsted Acid Ionic Liquid[J]. J Chinese Soc Corros Prot, 2015,35(5):400-406. doi: 10.11902/1005.4537.2014.181

    11. [11]

      ZHANG Honghong, XIE Yan, LIU Yuanwei. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by Salicylaldehyde Thiosemicarbazone[J]. Chinese J Appl Chem, 2015,32(6):720-725. doi: 10.11944/j.issn.1000-0518.2015.06.140317 

    12. [12]

      CHEN Wen, GUAN Chunping, YANG Shenming. Corrosion Inhibition of Equisetum Ramosissimum Extractive for Carbon Steel in Hydrochloric Acid Solution[J]. J Chinese Soc Corros Prot, 2016,36(2):177-184.  

    13. [13]

      WANG Chunxia, CHEN Jingping, ZHANG Xiaohong. Corrosion Inhibition of Octyl Isoquinolinium Bromide on Q235 Carbon Steel in HCl Solution[J]. J Chinese Soc Corros Prot, 2016,36(3):245-252. doi: 10.11902/1005.4537.2015.123

    14. [14]

      Oguzie E E, Enenebeaku C K, Akalezi C O. Adsorption and Corrosion-Inhibiting Effect of Dacryodis Edulis Extract on Low-Carbon-Steel Corrosion in Acidic Media[J]. J Colloid Interface Sci, 2010,349:283-292. doi: 10.1016/j.jcis.2010.05.027

    15. [15]

      Hegazy M A, Badawi A M, Rehim S S A E. Corrosion Inhibition of Carbon Steel Using Novel N-(2-(2-Mercaptoacetoxy)ethyl)-N, N-dimethyl Dodecan-1-aminium Bromide During Acid Pickling[J]. Corros Sci, 2013,69(2):110-122.

    16. [16]

      Cao Z, Tang Y, Cang H. Novel Benzimidazole Derivatives as Corrosion Inhibitors of Mild Steel in the Acidic Media.Part Ⅱ:Theoretical Studies[J]. Corros Sci, 2014,83(6):292-298.

    17. [17]

      LIAN Bingjie, SHI Zemin, XU Hui. Adsorption Mechanism of Azole Corrosion Inhibitors on Cu Surface[J]. Surf Technol, 2015,44(12):19-26.  

    18. [18]

      Obi-Egbedi N O, Obot I B. Inhibitive Properties, Thermodynamic and Quantum Chemical Studies of Alloxazine on Mild Steel Corrosion in H2SO4[J]. Corros Sci, 2011,53(1):263-275. doi: 10.1016/j.corsci.2010.09.020

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    12. [12]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    13. [13]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    19. [19]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

Metrics
  • PDF Downloads(1)
  • Abstract views(867)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return