Citation: CHEN Shijie, TANG Xiaojun, CHEN Xi, LI Yingjie, GAO Lidi, WANG Peng. Efficiency and Mechanism of Photocatalytic Oxidation of Norfloxacin in Wastewater by C/Fe-Bi2WO6[J]. Chinese Journal of Applied Chemistry, ;2017, 34(8): 936-945. doi: 10.11944/j.issn.1000-0518.2017.08.170019 shu

Efficiency and Mechanism of Photocatalytic Oxidation of Norfloxacin in Wastewater by C/Fe-Bi2WO6

  • Corresponding author: LI Yingjie, lyj310@163.com
  • Received Date: 18 January 2017
    Revised Date: 2 March 2017
    Accepted Date: 2 May 2017

    Fund Project: Research Business Special Fund of Heilongjiang Provincial Education Department No.135109209Supported by Research Business Special Fund of Heilongjiang Provincial Education Department(No.135109209)

Figures(9)

  • The C/Fe-Bi2WO6 photocatalyst was prepared by a two-step method, involving resin carbonization and hydrothermal reaction process. Comparative research on photoactivities of different catalysts was carried out. Influence of condition factors on photocatalytic oxidation degradation of norfloxacin(NOR) solution under simulated sunlight irradiation was investigated. The degrading reaction fits the first-order kinetics well under experimental conditions. After irradiation under a 500 W Xenon lamp for 60 min, NOR completely decomposed with the first order reaction rate constant(Kapp) of 0.0751 min-1 under the conditions that the initial concentration of NOR is 10 mg/L, the C/Fe-Bi2WO6 loading is 0.75 g/L, and the concentration of H2O2 is 200 mg/L at pH 7.0. The OH formation in C/Fe-Bi2WO6 photocatalytic oxidation was studied via molecular fluorescence spectrum, and the possible photocatalytic oxidation mechnasim and the degradation paths and intermediate products of NOR were proposed.
  • 加载中
    1. [1]

      Duong H A, Pham N H, Nguyen H T. Occurrence, Fate and Antibiotic Resistance of Fluoroquinolone Antibacterials in Hospital Wastewaters in Hanoi, Vietnam[J]. Chemosphere, 2008,72(6):968-973. doi: 10.1016/j.chemosphere.2008.03.009

    2. [2]

      Seifrtov M, Pena A, Lino C M. Determination of Fluoroquinolone Antibiotics in Hospital and Municipal Waste-waters in Coimbra by Liquid Chromatography with Amonolithic Column and Fluorescence Detection[J]. Anal Bioanal Chem, 2008,391(3):799-805. doi: 10.1007/s00216-008-2020-1

    3. [3]

      Golet E M, Alder A C, Giger W. Environmental Exposure and Risk Asesssment of Fluoroquinolone Antibacterial Agents in Wastewater and Fiver Water of the Glatt Valley Watershed, Switzerland[J]. Environ Sci Technol, 2002,36(17):3645-3651. doi: 10.1021/es0256212

    4. [4]

      Wang C Y, Zhang H, Li F. Degradation and Mineralization of Bisphenol A by Mesoporous Bi2WO6 under Simulated Solar Light Irradiation[J]. Environ Sci Technol, 2010,44(17):6843-6848. doi: 10.1021/es101890w

    5. [5]

      Navarro S, Fenoll J, Vela N. Removal of Ten Pesticides from Leaching Water at Pilot Plant Scale by Photo-Fenton Treatment[J]. Chem Eng J, 2011,167(1):42-49. doi: 10.1016/j.cej.2010.11.105

    6. [6]

      Sun J H, Song M K, Feng J L. Highly Efficient Degradation of Ofloxacin by UV/Oxone/Co2+ Oxidation Process[J]. Environ Sci Pollut Res, 2012,19(5):1536-1543. doi: 10.1007/s11356-011-0654-6

    7. [7]

      WEI Hong, LI Juan, LI Kebin. Degradation of Levofloxacin by Sonolysis-assisted H2O2 in Aqueous Solution[J]. China Environ Sci, 2013,33(2):257-262.

    8. [8]

      Niu H Y, Zhang D, Zhang S X. Humic Acid Coated Fe3O4 Magnetic Nanoparticles as Highly Efficient Fenton-like Catalyst for Complete Mineralization of Sulfathiazole[J]. J Hazard Mater, 2011,190(1/2/3):559-565.

    9. [9]

      Murcia-López S, Hidalgo M C, Navío J A. Photocatalytic Activity of Single and Mmixed Nanosheet-like Bi2WO6 and TiO2 for Rhodamine B Degradation under Sunlike and Visible Illumination[J]. Appl Catal A-Gen, 2012,423(1):34-41.

    10. [10]

      Liu S W, Yu J G. Cooperative Self-Construction and Enhanced Optical Absorption of Nanoplates-assembled Hierarchical Bi2WO6 Flowers[J]. J Solid State Chem, 2008,181(5):1048-1055. doi: 10.1016/j.jssc.2008.01.049

    11. [11]

      Fu H B, Zhang L W, Yao W Q. Photocatalytic Properties of Nanosized Bi2WO6 Catalysts Synthesized via a Hydrothermal Process[J]. Appl Catal B:Environ, 2006,66(1/2):100-110.

    12. [12]

      Guo Y D, Zhang G K, Gan H H. Synthesis, Characterization and Visible Light Photocatalytic Properties of Bi2WO6/Rectorite Composites[J]. J Colloid Interface Sci, 2012,369(1):323-329. doi: 10.1016/j.jcis.2011.11.066

    13. [13]

      Chen M J, Chu W. Efficient Degradation of an Antibiotic Norfloxacin in Aqueous Solution via a Simulated Solar-Light-Mediated Bi2WO6 Process[J]. Ind Eng Chem Res, 2012,51(13):4887-4893. doi: 10.1021/ie300146h

    14. [14]

      Shang M, Wang W Z, Sun S M. Efficient Visible Light-Induced Photocatalytic Degradation of Contaminant by Spindle-Like PANI/BiVO4[J]. J Phys Chem C, 2009,113(47):20228-20233. doi: 10.1021/jp9067729

    15. [15]

      Gumy D, Morais C, Bowen P. Catalytic Activity of Commercial of TiO2 Powders for the Abatement of the Bacteria(E.coli) under Solar Simulated Light:Influence of the Isoelectric Point[J]. Appl Catal B:Environ, 2006,63(1/2):76-84.

    16. [16]

      Cho I H, Zoh K D. Photocatalytic Degradation of Azo Dye(Reactive Red 120) in TiO2/UV System:Optimization and Modeling Using a Response Surface Methodology(RSM) Based on the Central Composite Design[J]. Dyes Pigm, 2007,75(3):533-543. doi: 10.1016/j.dyepig.2006.06.041

    17. [17]

      Su M H, He C, Sharma V K. Mesoporous Zinc Ferrite:Synthesis, Characterization, and Photocatalytic Activity with H2O2/Visible Light[J]. J Hazard Mater, 2012,211/212(1):95-103.

    18. [18]

      Mao Y, Schoneich C, Asmus K D. Identification of Organic Acids and Other Intermediates in Oxidative Degradation of Chlorinated Ethanes on TiO2 Surfaces En Route to Mineralization. A Combined Photocatalytic and Radiation Chemical Study[J]. J Phys Chem, 1991,95(24):10080-10089. doi: 10.1021/j100177a085

    19. [19]

      Chen S J, Li Y J, Lv R J. Preparation, Characterization of C/Fe-Bi2WO6 Nanosheet Composite and Degradation Application of Norfloxacin in Water[J]. J Nanosci Nanotechnol, 2013,13(8):5624-5630. doi: 10.1166/jnn.2013.7486

    20. [20]

      Wang D J, Xue G L, Zhen Y Z. Monodispersed Ag Nanoparticles Loaded on the Surface of Spherical Bi2WO6 Nanoarchitectures with Enhanced Photocatalytic Activities[J]. J Mater Chem, 2012,22(11):4751-4758. doi: 10.1039/c2jm14448d

    21. [21]

      An T C, Yang H, Song W H. Mechanistic Considerations for the Advanced Oxidation Treatment of Fluoroquinolone Pharmaceutical Compounds using TiO2 Heterogeneous Catalysis[J]. J Phys Chem A, 2010,114(7):2569-2575. doi: 10.1021/jp911349y

    22. [22]

      Paul T, Miller P L, Strathmann T J. Visible-Light-Mediated TiO2 Photocatalysis of Fluoroquinolone Antibacterial Agents[J]. Environ Sci Technol, 2007,41(13):4720-4727. doi: 10.1021/es070097q

  • 加载中
    1. [1]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    2. [2]

      Laiyang ZHUXuze PANXiaoying ZHANGXinyu XUShiheng LIFajin CAIYifan WANGQingxia YAOYi QIUJie SU . Synthesis of stable and porous bimetallic Ti-MOF for photocatalytic oxidation of aromatic sulfides to sulfoxides. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2115-2126. doi: 10.11862/CJIC.20250139

    3. [3]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    4. [4]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    5. [5]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    8. [8]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    9. [9]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    10. [10]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    11. [11]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    12. [12]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    13. [13]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    14. [14]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    15. [15]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    16. [16]

      Xingyan LiuKaili WuYacen TangNing QiYumeng ZhangYouzhou HeMin FuYanhui Ao . Ti3C2 MXene-derived TiO2@C attached on Bi2WO6 with oxygen vacancies to fabricate S-scheme heterojunction for photocatalytic antibiotics degradation and NO removal. Chinese Chemical Letters, 2025, 36(11): 110882-. doi: 10.1016/j.cclet.2025.110882

    17. [17]

      Hui LiChunlang GaoGuo YangLu XiaWulyu JiangCheng WuKaiwen WangYingtang ZhouXiaodong Han . Enhanced photocatalytic CO2 reduction of Bi2WO6-BiOCl heterostructure with coherent interface for charge utilization. Chinese Chemical Letters, 2025, 36(9): 110547-. doi: 10.1016/j.cclet.2024.110547

    18. [18]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    19. [19]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Tong WUYi ZHONGWeimin ZHAOHong XUZhiping MAOLinping ZHANG . BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1765-1775. doi: 10.11862/CJIC.20250103

Metrics
  • PDF Downloads(5)
  • Abstract views(1882)
  • HTML views(316)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return