Efficiency and Mechanism of Photocatalytic Oxidation of Norfloxacin in Wastewater by C/Fe-Bi2WO6
- Corresponding author: LI Yingjie, lyj310@163.com
Citation:
CHEN Shijie, TANG Xiaojun, CHEN Xi, LI Yingjie, GAO Lidi, WANG Peng. Efficiency and Mechanism of Photocatalytic Oxidation of Norfloxacin in Wastewater by C/Fe-Bi2WO6[J]. Chinese Journal of Applied Chemistry,
;2017, 34(8): 936-945.
doi:
10.11944/j.issn.1000-0518.2017.08.170019
Duong H A, Pham N H, Nguyen H T. Occurrence, Fate and Antibiotic Resistance of Fluoroquinolone Antibacterials in Hospital Wastewaters in Hanoi, Vietnam[J]. Chemosphere, 2008,72(6):968-973. doi: 10.1016/j.chemosphere.2008.03.009
Seifrtov M, Pena A, Lino C M. Determination of Fluoroquinolone Antibiotics in Hospital and Municipal Waste-waters in Coimbra by Liquid Chromatography with Amonolithic Column and Fluorescence Detection[J]. Anal Bioanal Chem, 2008,391(3):799-805. doi: 10.1007/s00216-008-2020-1
Golet E M, Alder A C, Giger W. Environmental Exposure and Risk Asesssment of Fluoroquinolone Antibacterial Agents in Wastewater and Fiver Water of the Glatt Valley Watershed, Switzerland[J]. Environ Sci Technol, 2002,36(17):3645-3651. doi: 10.1021/es0256212
Wang C Y, Zhang H, Li F. Degradation and Mineralization of Bisphenol A by Mesoporous Bi2WO6 under Simulated Solar Light Irradiation[J]. Environ Sci Technol, 2010,44(17):6843-6848. doi: 10.1021/es101890w
Navarro S, Fenoll J, Vela N. Removal of Ten Pesticides from Leaching Water at Pilot Plant Scale by Photo-Fenton Treatment[J]. Chem Eng J, 2011,167(1):42-49. doi: 10.1016/j.cej.2010.11.105
Sun J H, Song M K, Feng J L. Highly Efficient Degradation of Ofloxacin by UV/Oxone/Co2+ Oxidation Process[J]. Environ Sci Pollut Res, 2012,19(5):1536-1543. doi: 10.1007/s11356-011-0654-6
WEI Hong, LI Juan, LI Kebin. Degradation of Levofloxacin by Sonolysis-assisted H2O2 in Aqueous Solution[J]. China Environ Sci, 2013,33(2):257-262.
Niu H Y, Zhang D, Zhang S X. Humic Acid Coated Fe3O4 Magnetic Nanoparticles as Highly Efficient Fenton-like Catalyst for Complete Mineralization of Sulfathiazole[J]. J Hazard Mater, 2011,190(1/2/3):559-565.
Murcia-López S, Hidalgo M C, Navío J A. Photocatalytic Activity of Single and Mmixed Nanosheet-like Bi2WO6 and TiO2 for Rhodamine B Degradation under Sunlike and Visible Illumination[J]. Appl Catal A-Gen, 2012,423(1):34-41.
Liu S W, Yu J G. Cooperative Self-Construction and Enhanced Optical Absorption of Nanoplates-assembled Hierarchical Bi2WO6 Flowers[J]. J Solid State Chem, 2008,181(5):1048-1055. doi: 10.1016/j.jssc.2008.01.049
Fu H B, Zhang L W, Yao W Q. Photocatalytic Properties of Nanosized Bi2WO6 Catalysts Synthesized via a Hydrothermal Process[J]. Appl Catal B:Environ, 2006,66(1/2):100-110.
Guo Y D, Zhang G K, Gan H H. Synthesis, Characterization and Visible Light Photocatalytic Properties of Bi2WO6/Rectorite Composites[J]. J Colloid Interface Sci, 2012,369(1):323-329. doi: 10.1016/j.jcis.2011.11.066
Chen M J, Chu W. Efficient Degradation of an Antibiotic Norfloxacin in Aqueous Solution via a Simulated Solar-Light-Mediated Bi2WO6 Process[J]. Ind Eng Chem Res, 2012,51(13):4887-4893. doi: 10.1021/ie300146h
Shang M, Wang W Z, Sun S M. Efficient Visible Light-Induced Photocatalytic Degradation of Contaminant by Spindle-Like PANI/BiVO4[J]. J Phys Chem C, 2009,113(47):20228-20233. doi: 10.1021/jp9067729
Gumy D, Morais C, Bowen P. Catalytic Activity of Commercial of TiO2 Powders for the Abatement of the Bacteria(E.coli) under Solar Simulated Light:Influence of the Isoelectric Point[J]. Appl Catal B:Environ, 2006,63(1/2):76-84.
Cho I H, Zoh K D. Photocatalytic Degradation of Azo Dye(Reactive Red 120) in TiO2/UV System:Optimization and Modeling Using a Response Surface Methodology(RSM) Based on the Central Composite Design[J]. Dyes Pigm, 2007,75(3):533-543. doi: 10.1016/j.dyepig.2006.06.041
Su M H, He C, Sharma V K. Mesoporous Zinc Ferrite:Synthesis, Characterization, and Photocatalytic Activity with H2O2/Visible Light[J]. J Hazard Mater, 2012,211/212(1):95-103.
Mao Y, Schoneich C, Asmus K D. Identification of Organic Acids and Other Intermediates in Oxidative Degradation of Chlorinated Ethanes on TiO2 Surfaces En Route to Mineralization. A Combined Photocatalytic and Radiation Chemical Study[J]. J Phys Chem, 1991,95(24):10080-10089. doi: 10.1021/j100177a085
Chen S J, Li Y J, Lv R J. Preparation, Characterization of C/Fe-Bi2WO6 Nanosheet Composite and Degradation Application of Norfloxacin in Water[J]. J Nanosci Nanotechnol, 2013,13(8):5624-5630. doi: 10.1166/jnn.2013.7486
Wang D J, Xue G L, Zhen Y Z. Monodispersed Ag Nanoparticles Loaded on the Surface of Spherical Bi2WO6 Nanoarchitectures with Enhanced Photocatalytic Activities[J]. J Mater Chem, 2012,22(11):4751-4758. doi: 10.1039/c2jm14448d
An T C, Yang H, Song W H. Mechanistic Considerations for the Advanced Oxidation Treatment of Fluoroquinolone Pharmaceutical Compounds using TiO2 Heterogeneous Catalysis[J]. J Phys Chem A, 2010,114(7):2569-2575. doi: 10.1021/jp911349y
Paul T, Miller P L, Strathmann T J. Visible-Light-Mediated TiO2 Photocatalysis of Fluoroquinolone Antibacterial Agents[J]. Environ Sci Technol, 2007,41(13):4720-4727. doi: 10.1021/es070097q
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
a.0.5 g/L; b.0.75 g/L; c.1.0 g/L; d.1.25 g/L; e.1.5 g/L
a.100 mg/L; b.150 mg/L; c.200 mg/L; d.250 mg/L; e.300 mg/L