Citation: CHENG Hongli, ZHOU Chengfang, WANG Xianglan. Enrichment of Rare Earth Through the Hollow Fiber Dispersion Liquid Membrane[J]. Chinese Journal of Applied Chemistry, ;2017, 34(8): 971-976. doi: 10.11944/j.issn.1000-0518.2017.08.160489 shu

Enrichment of Rare Earth Through the Hollow Fiber Dispersion Liquid Membrane

  • Corresponding author: WANG Xianglan, 455719325@qq.com
  • Received Date: 5 December 2016
    Revised Date: 18 January 2017
    Accepted Date: 28 March 2017

    Fund Project: the National Natural Science Foundation of China No.21401146Supported by the National Natural Science Foundation of China(No.21401146)

Figures(8)

  • The hollow fiber dispersion liquid membrane technique was applied for the enrichment of rare earth using 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester(HEHEHP) as the extractant and HCl as the stripping agent. All experiments were conducted in the hollow fiber modules that were self-assembled with 20 microporous hydrophobic hollow fiber of polyvinylidene fluoride membrane(PVDF) lumens. The experiment parameters, e.g., HCl concentration, extractant concentration, initial pH in feed phase and rare earth ions concentration, and the volume ratio of the stripping dispersion phase to the feed solution, etc., were investigated. The stripping dispersion phase and the feed phase(50 mL each) were agitated continuously to provide a uniform concentration of metal ions and circulated by means of precise constant flow pumps through the shell side and lumen side of the module, respectively. A membrane pressure was applied in the lumen side to prevent the dispersion of the organic phase into the feed phase. The flow rates of both phases were maintained constant with the help of the constant-flow pump equipped with a precise flow controller. After the stable flows are achieved on both the shell side and the lumen side, aqueous samples are taken from the reservoir every ten minutes for analysis of concentrations of rare earth ions. The optimum extraction conditions of Yb3+ were obtained:the HCl concentration is 4.00 mol/L in the stripping dispersion phase, the concentration of HEHEHP is 0.25 mol/L, the volume ratio of the stripping dispersion phase to the feed solution is 10:40, the pH value in the feed phase is 2.80, and the initial concentration of Yb3+ is 0.025 mol/L. The optimum conditions obtained may contribute to the development of new methods for the extraction of heavy rare earth ions.
  • 加载中
    1. [1]

      LI Deqian, ZHANG Jie, XU Min. Studies of Extraction Mechanism of Rare Earth Compounds with Mono(2-Ethylhexyl) 2-Ethylhexyl Phosphonate(HEH[EHP])[J]. Chinese J Appl Chem, 1985,2(2):17-23.  

    2. [2]

      Kulkami P S, Mukhopadhyay S, Bellary M P. Studies on Membrane Stability and Recovery of Uranium(Ⅶ) from Aqueous Solutions Using a Liquid Emulsion Membrane Process[J]. Hydrometallurgy, 2002,64(1):49-58. doi: 10.1016/S0304-386X(02)00006-3

    3. [3]

      DU Jun, ZHOU Kun, TAO Changyuan. Advances in Supported Liquid Membranes[J]. Chem Res Appl, 2004,16(2):160-164.  

    4. [4]

      Correia Paulo F M M, Carvalho Jorge M R. Recovery of 2-Chlorophenol from Aqueous Solutions by Emulsion Liquid Membranes:Batch Experimental Studies and Modelling[J]. J Membr Sci, 2000,179(1/2):175-183.

    5. [5]

      Bhattacharyya A, Mohapatra P K, Ansari S A. Separation of Trivalent Actinides from Lanthanides Using Hollow Fiber Supported Liquid Membrane Containing Cyanex-301 as the Carrier[J]. J Membr Sci, 2008,312(1/2):1-5.

    6. [6]

      Wannachod P, Chaturabul S, Pancharoen U. The Effective Recovery of Praseodymium from Mixed Rare Earths via a Hollow Fiber Supported Liquid Membrane and Its Mass Transfer Related[J]. J Alloys Compd, 2011,509(2):354-361. doi: 10.1016/j.jallcom.2010.09.025

    7. [7]

      Ramakul P, Supajaroon T, Prapasawat T. Synergistic Separation of Yttrium Ions in Lanthanide Series from Rare Earths Mixture via Hollow Fiber Supported Liquid Membrane[J]. J Ind Eng Chem, 2009,15(2):224-228. doi: 10.1016/j.jiec.2008.09.011

    8. [8]

      Ramakul P, Mooncluen U, Yanachawakul Y. Mass Transport Modeling and Analysis on the Mutual Separation of Lanthanum(Ⅲ) and Cerium(Ⅳ) Through a Hollow Fiber Supported Liquid Membrane[J]. J Ind Eng Chem, 2012,18(5):1606-1611. doi: 10.1016/j.jiec.2012.02.020

    9. [9]

      Ansari S A, Mohapatra P K, Manchanda V K. Recovery of Actinides and Lanthanides from High-Level Waste Using Hollow-Fiber Supported Liquid Membrane with TODGA as the Carrier[J]. Ind Eng Chem Res, 2009,48(18):8605-8612. doi: 10.1021/ie900265y

    10. [10]

      Ambare D N, Ansari S S, Anitha M. Non-dispersive Solvent Extraction of Neodymium Using a Hollow Fiber Contactor:Mass Transfer and Modeling Studies[J]. J Membr Sci, 2013,446(1):106-112.

    11. [11]

      Wannachod T, Leepipatpiboon N, Pancharoen U. Synergistic Effect of Various Neutral Donors in D2EHPA for Selective Neodymium Separation from Lanthanide Series via HFSLM[J]. J Ind Eng Chem, 2014,20(6):4152-4162. doi: 10.1016/j.jiec.2014.01.014

    12. [12]

      Zhang W D, Cui C H, Yang Y Q. Mass Transfer of Copper(Ⅱ) in Hollow Fiber Renewal Liquid Membrane with Different Carriers[J]. Chinese J Chem Eng, 2010,18(2):346-350. doi: 10.1016/S1004-9541(08)60363-8

    13. [13]

      Ren Z Q, Yang Y Q, Zhang W Q. Modeling Study on the Mass Transfer of Hollow Fiber Renewal Liquid Membrane: Effect of the Hollow Fiber Module Scale[J]. J Membr Sci, 2013,439(15):28-35.

    14. [14]

      ZHANG Weidong, LI Aimin, REN Zhongqi. Mass Transfer Characteristics of Hollow Fiber Renewal Liquid Membrane[J]. J Chem Eng Chinese Univ, 2006,20(5):843-846.  

    15. [15]

      Zhang W D, Cui C H, Ren Z Q. Simultaneous Removal and Recovery of Copper(Ⅱ) from Acidic Wastewater by Hollow Fiber Renewal Liquid Membrane with LIX984N as Carrier[J]. Chem Eng J, 2010,157(1):230-237. doi: 10.1016/j.cej.2009.12.032

    16. [16]

      Pei L, Wang L M, Guo W. Stripping Dispersion Hollow Fiber Liquid Membrane Containing PC-88A as Carrier and HCl for Transport Behavior of Trivalent Dysprosium[J]. J Membr Sci, 2011,378(1/2):520-530.

    17. [17]

      Pei L, Yao B H, Zhang C J. Transport of Tm(Ⅲ) Through Dispersion Supported Liquid Membrane Containing PC-88A in Kerosene as the Carrier[J]. J Sep Sci Technol, 2009,65(2):220-227.

  • 加载中
    1. [1]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    2. [2]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    3. [3]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    4. [4]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    5. [5]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    11. [11]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    13. [13]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    14. [14]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    18. [18]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    20. [20]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

Metrics
  • PDF Downloads(0)
  • Abstract views(699)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return