Citation: PENG Bingxian, WANG Xiaoli, LIU Ruihan, ZHOU Aihong. Degradation of Ammonia-Nitrogen in Wastewater by TiO2/Pumice Photocatalyst under Solar Light[J]. Chinese Journal of Applied Chemistry, ;2017, 34(8): 946-954. doi: 10.11944/j.issn.1000-0518.2017.08.160474 shu

Degradation of Ammonia-Nitrogen in Wastewater by TiO2/Pumice Photocatalyst under Solar Light

  • Corresponding author: PENG Bingxian, pbingxian@163.com
  • Received Date: 24 November 2016
    Revised Date: 3 January 2017
    Accepted Date: 12 February 2017

    Fund Project: Natural Science Foundation of Jiangxi Province No.20142BAB203020Supported by Scientific and Technological Plan Project of Jiangxi Province(No.20141BBG70008), Natural Science Foundation of Jiangxi Province(No.20142BAB203020)Scientific and Technological Plan Project of Jiangxi Province No.20141BBG70008

Figures(8)

  • Photocatalytic degradation of ammonia-nitrogen in simulated wastewater was investigated by the TiO2/pumice photocatalyst under solar light. TiO2 prepared by the sol-gel method was used as the photocatalyst and immobilized on porous pumice granules. To optimize the photocatalytic reaction, the effect of the initial concentration of ammonia-nitrogen, pH, reaction time and catalyst loading on the ammonia-nitrogen degradation rate were investigated in an aerated reactor. Also, the morphology and chemical structure properties of the prepared catalysts were characterized by scanning electron microscopy(SEM), X-ray fluorescence spectrometer(XRF) and Fourier transform infrared spectroscopy(FT-IR) analyses. The experimental results indicate that the coating ratio of TiO2 on pumice is 3.71%; the ammonia-nitrogen degradation rate is increased by increasing the pH value, time of solar light irradiation and dose of TiO2/pumice. After solar light irradiation for 180 min, a high degradation rate of 82.0% and a removal rate of 86.8% are achieved under 500 mg/L ammonia-nitrogen, pH 11 and 30 g/L TiO2/pumice. Moreover, the NO2- and NO3- pollutes are not found in degradation products. The photocatalyst can be reused at least three consecutive times with about 10.0% decrease on the ammonia-nitrogen degradation rate. The results suggest that the photocatalytic purification by photocatalysis is a rapid, low consumed and effective method for the degradation of ammonia-nitrogen in wastewater.
  • 加载中
    1. [1]

      Almutairi A, Weatherley L R. Intensification of Ammonia Removal from Waste Water in Biologically Active Zeolitic Ion Exchange Columns[J]. J Environ Manage, 2015,160:128-138. doi: 10.1016/j.jenvman.2015.05.033

    2. [2]

      Harrison C C, Malati M A, Smetham N B. The UV-enhanced Decomposition of Aqueous Ammonium Nitrite[J]. J Photochem Photobiol, 1995,89(3):215-219. doi: 10.1016/1010-6030(95)04060-S

    3. [3]

      Nosratinia F, Ghadiri M, Ghahremani H. Mathematical Modeling and Numerical Simulation of Ammonia Removal from Wastewaters Using Membrane Contactors[J]. J Ind Eng Chem, 2014,20(5):2958-2963. doi: 10.1016/j.jiec.2013.10.065

    4. [4]

      QIAO Shijun, ZHAO Aiping, XU Xiaolian. Study on Ammonia Nitrogen in Waste Water Degradation by TiO2 Photocatalysis[J]. Environ Sci Res, 2005,18(3):43-45.  

    5. [5]

      Shavisi Y, Sharifnia S, Hosseini S N. Application of TiO2/Perlite Photocatalysis for Degradation of Ammonia in Wastewater[J]. J Ind Eng Chem, 2014,20(1):278-283. doi: 10.1016/j.jiec.2013.03.037

    6. [6]

      Shavisi Y, Sharifnia S, Zendehzaban M. Application of Solar Light for Degradation of Ammonia in Petrochemical Wastewater by A Floating TiO2/LECA Photocatalyst[J]. J Ind Eng Chem, 2014,20(5):2806-2813. doi: 10.1016/j.jiec.2013.11.011

    7. [7]

      LI Yuanhao, DING Zhonghao, TAO Xiaoming. Nanometer TiO2 Based Photocatalytic Degradation of Oilfield Ammonia Wastewater[J]. Hubei Agric Sci, 2013,52(21):5186-5188. doi: 10.3969/j.issn.0439-8114.2013.21.018

    8. [8]

      LI Dandan, LIU Zhongqing, YAN Xin. Photo-electro Catalytic Oxidation of Ammonia Nitrogen Wastewater on TiO2 Nanotube Arrays[J]. Chinese J Inorg Chem, 2011,27(7):1358-1368.  

    9. [9]

      LI Dandan, LIU Zhongqing, LIU Xu. Silver Doped TiO2 Nanotube Arrays:Preparation and Photoelectric Catalysis Degradation of Ammonia Nitrogen Wastewater[J]. Chinese J Inorg Chem, 2012,28(7):1343-1347.  

    10. [10]

      QIU Yongping, ZHANG Guoqing, YANG Xiaoqing. Study on Synergistic Effect of Photo-electrical Method for Degradation of Ammonia Nitrogen[J]. Chinese J Environ Eng, 2015,9(1):150-156. doi: 10.12030/j.cjee.20150125

    11. [11]

      Zhang L W, Fu H B, Zhu Y F. Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon[J]. Adv Funct Mater, 2008,18:2180-2189. doi: 10.1002/adfm.v18:15

    12. [12]

      ZHANG Hongman, CHEN Guosong, DAUN Hejun. Direct Determination and Photocatalytic Degradation of Methyl Orange by Three-wavelengths Spectrophotometry in the Titanium Dioxide Suspension System[J]. Chinese J Anal Chem, 2005(10):1417-1420. doi: 10.3321/j.issn:0253-3820.2005.10.015

    13. [13]

      Kolinko P A, Kozlov D V. Products Distribution During the Gas Phase Photocatalytic Oxidation of Ammonia Over the Various Titania Based Photocatalysts[J]. Appl Catal B, 2009,90(1/2):126-131.

    14. [14]

      Altomare M, Chiarello G L, Costa A. Photocatalytic Abatement of Ammonia in Nitrogen-containing Effluents[J]. Chem Eng J, 2012,191:394-401. doi: 10.1016/j.cej.2012.03.037

    15. [15]

      Pretzer L A, Carlson P J, Boyd J E. The Effect of Pt Oxidation State and Concentration on the Photocatalytic Removal of Aqueous Ammonia with Pt-modified Titania[J]. J Photochem Photobiol A, 2008,200(2/3):246-253.

    16. [16]

      Dijkstra M F J, Michorius A, Buwalda H. Comparison of the Efficiency of Immobilized and Suspended Systems in Photocatalytic Degradation[J]. Catal Today, 2001,66(2/3/4):487-494.

    17. [17]

      GAO He, LIANG Daxin, LI Jian. Preparation and Properties of Nano TiO2-ZnO Binary Collaborative Wood[J]. Chem J Chinese Univ, 2016,37(6):1075-1081.  

    18. [18]

      Lv Y, Yu L, Zhang X. P-doped TiO2 Nanoparticles Film Coated on Ground Glass Substrate and the Repeated Photodegradation of Dye under Solar Light Irradiation[J]. Appl Surf Sci, 2011,257(13):5715-5719. doi: 10.1016/j.apsusc.2011.01.082

    19. [19]

      Yao S, Li J, Shi Z. Immobilization of TiO2 Nanoparticles on Activated Carbon Fiber and Its Photodegradation Performance for Organic Pollutants[J]. Particuology, 2010,8(3):272-278. doi: 10.1016/j.partic.2010.03.013

    20. [20]

      Wang C, Shi H, Li Y. Synthesis and Characteristics of Natural Zeolite Supported Fe3+-TiO2 Photocatalysts[J]. Appl Surf Sci, 2011,257(15):6873-6977. doi: 10.1016/j.apsusc.2011.03.021

    21. [21]

      Koci K, Matejka V, Kovar P. Comparison of the Pure TiO2 and Kaolinite/TiO2 Composite as Ccatalyst for CO2 Photocatalytic Reduction[J]. Catal Today, 2011,161(1):105-109. doi: 10.1016/j.cattod.2010.08.026

    22. [22]

      Zendehzaban M, Sharifnia S, Hosseini S N. Photocatalytic Degradation of Ammonia by Light Expanded Clay Aggregate(LECA)-coating of TiO2 Nanoparticles[J]. Korean J Chem Eng, 2013,30(3):574-579. doi: 10.1007/s11814-012-0212-z

    23. [23]

      YU Jiaguo, ZHAO Xiujian. TiO2 Nanometer Thin Film Prepared by Sol-gel Processing and Its Surface Structure[J]. Chinese J Nonferrous Met, 1999,9(4):815-820.  

    24. [24]

      DING Zhibin, YU Zhanhuan, CHENG Tingting. Research on Experimental Condition of Aanalyzing Total Nitrogen of Water by Ultraviolet Spectrophotometric Method[J]. Water Purifi Technol, 2008,27(1):61-64.  

    25. [25]

      SUN Guoming. Research on Rapid and Accurate Determination Method of Ammonia Nitrogen and Nitrite Nitrogen[J]. J Aquacul, 2004,25(1):37-40.  

    26. [26]

      LIU Jing, JI Xiaona, REN Qingkai. The Research on Nitrite Nitrogen Detection in Waste Water by HPLC[J]. J Changchun Inst, 2014,15(1):104-105.  

    27. [27]

      Altomare M, Chiarello G L, Costa A. Photocatalytic Abatement of Ammonia in Nitrogen-containing Effluents[J]. Chem Eng J, 2012,191(19):394-401.

    28. [28]

      Gaya U I, Abdullah A H. Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide:A Review of Fundamentals, Progress and Problems[J]. J Photochem Photobiol C, 2008,9(1):1-12. doi: 10.1016/j.jphotochemrev.2007.12.003

    29. [29]

      Ozturk E, Bal N. Evaluation of Ammonia-nitrogen Removal Efficiency from Aqueous Solutions by Ultrasonic Irradiation in Short Sonication Periods[J]. Ultrason Sonochem, 2015,26:422-427. doi: 10.1016/j.ultsonch.2015.02.012

  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(2)
  • Abstract views(850)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return