Citation: YANG Jin, LIU Qing, REN Yinghui, ZHANG Xianbo, MA Haixia, XU Kangzhen, ZHAO Fengqi, HU Rongzu. A New Energetic Material-Tetrazine Cobalt Salt:Synthesis, Thermal Decomposition Kinetics and Thermal Safety[J]. Chinese Journal of Applied Chemistry, ;2017, 34(8): 928-935. doi: 10.11944/j.issn.1000-0518.2017.08.160466 shu

A New Energetic Material-Tetrazine Cobalt Salt:Synthesis, Thermal Decomposition Kinetics and Thermal Safety

  • Corresponding author: REN Yinghui, nwuryh@163.com
  • Received Date: 17 November 2016
    Revised Date: 31 January 2017
    Accepted Date: 11 April 2017

    Fund Project: the National Defense Pre-Research Foundation of China No.***3401Supported by the National Defense Pre-Research Foundation of China(No.***3401)

Figures(4)

  • Tetrazine compounds have great applications in energetic materials field, which is attributed to its high energy, insensitivity, high burning rate, low pressure and good thermal stability properties. However, they have disadvantages of low density and thermal stability. To enhance the low properties of tetrazine compounds, a series of the tetrazine derivatives have attracted considerable attention. 3, 6-Bis(1-H-1, 2, 3, 4-tetrazole-5-amino)-1, 2, 4, 5-tetrazine(BTATz), as a high-nitrogen energetic material, has good catalytic performance and application prospect. Therefore, we synthesized 1, 2, 4, 5-tetrazine (s-tetrazine) cobalt salt with potassium salt of BTATz and cobalt nitrate in an aqueous solution. Its structure was characterized with elemental analysis, Fourier transform infrared spectrometer(FTIR) and inductively coupled plasma mass spectrometry(ICP-MS). Its chemical formula is Co(C4H2N14)·4H2O. The thermal behavior and thermal decomposition reaction kinetics were also investigated with differential scanning calorimetric(DSC) and thermal gravimetric-differential thermal gravimetric(TG-DTG) methods. The self-accelerating decomposition temperature(TSADT), thermal ignition temperature(TTIT), critical temperature of thermal explosion(Tb) and the adiabatic time-to-explosion(tTIAD) were calculated as the important parameters to estimate the thermal safety, and the value were 509.69 K, 556.31 K, 524.93 K and 88.40 s, respectively. The adiabatic time-to-explosion is longer than those of Ca salt, Mg salt and Sr salt and the exothermic capacity is higher than that of its ligand BTATz. Therefore, it is expected to be a good combustion catalyst.
  • 加载中
    1. [1]

      XUE Jinqiang, SHANG Bingkun, WANG Wei. Research Advances in Tetrazine-based High-nitrogen Molecular and Ionic Energetic Compounds[J]. Chem Propellants Polym Mater, 2011,9(4):91-99.  

    2. [2]

      Hickey M A, Chavez D E, Naud D. Preparation of 3, 3'-Azobis(6-amino-1, 2, 4, 5-tetrazine):US Patent, 6342589[P], 2002.

    3. [3]

      Hickey M A, Chavez D E, Naud D. 3, 6-Bis(1H-1, 2, 3, 4-Tetrazol-5-ylamino)-1, 2, 4, 5-Tetrazine or Salt Thereof:US Patent, 6657059[P], 2003.

    4. [4]

      YUE Shouti, YANG Shiqing. Synthesis and Properties of 3, 6-Bis(1H-1, 2, 3, 4-tetrazol-5-yl amino)-1, 2, 4, 5-tetrazine[J]. Chinese J Energ Mater, 2004,12(3):155-157.  

    5. [5]

      WANG Bozhou, LAI Weipeng, LIU Qian. Synthesis, Characterization and Quantum Chemistry Study on 3, 6-Bis(1H-1, 2, 3, 4-tetrazol-5-yl-amino)-1, 2, 4, 5-tetrazine[J]. Chinese J Org Chem, 2008,28(3):422-428.  

    6. [6]

      Saikia A, Sivabalan R, Polke B G. Burn Rate Measurements of HMX, TATB, DHT, DAAF, and BTATz[J]. J Hazard Mater, 2009,170(1):306-311. doi: 10.1016/j.jhazmat.2009.04.095

    7. [7]

      ZHANG Xinggao, ZHU Hui, YANG Shiqing. Study on Thermal Decomposition Kinetics and Mechanism of Nitrogen-rich Compound BTATz[J]. J Propul Technol, 2007,8(3):322-326.  

    8. [8]

      Chavez D E, Hiskey M A, Naud D L. Tetrazine Exposives[J]. Propellants Explos Pyrotech, 2004,29(4):209-215. doi: 10.1002/(ISSN)1521-4087

    9. [9]

      Son S F, Berghout H L, Bolme C A. Burn Rate Measurements of HMX, TATB, DHT, DAAF, and BTATz[J]. Ptoc Combust Inst, 2000,28(1):919-924. doi: 10.1016/S0082-0784(00)80298-2

    10. [10]

      Li N, Zhao F Q, Luo Y. Dissolution Properties of 3, 6-Bis(1H-1, 2, 3, 4-tetrazol-5-ylamino)-1, 2, 4, 5-tetrazine in N-Methyl Pyrrolidone and Dimethyl Sulfoxide[J]. J Solution Chem, 2014,43(7):1250-1258. doi: 10.1007/s10953-014-0198-8

    11. [11]

      Zhang X B, Ren Y H, Li W. A Novel Magnesium Salt Based on BTATz:Crystal Structure, Thermal Behavior and Thermal Safety[J]. Chem Res Chinese Univ, 2013,29(4):627-631. doi: 10.1007/s40242-013-2350-1

    12. [12]

      Zhang X B, Ren Y H, Li W. 3, 6-Bis(1H-1, 2, 3, 4-tetrazol-5-yl-amino)-1, 2, 4, 5-Tetrazine-Based Energetic Strontium(Ⅱ) Complexes:Synthesis, Crystal Structure and Thermal Properties[J]. J Coord Chem, 2013,66(12):2051-2064. doi: 10.1080/00958972.2013.796040

    13. [13]

      REN Yinghui, ZHAO Fengqi, YI Jianhua, et al. Energetic Metal Complexes of BTATz and Its Method of Preparation:CN, 201110149420.2[P], 2011(in Chinese).

    14. [14]

      LI Wen, REN Yinghui, ZHAO Fengqi. Nitrogen-rich Energetic Zinc Salt on BTATz:Syntheses and Thermodynamic[J]. J Funct Mater, 2013,44(22):3326-3329. doi: 10.3969/j.issn.1001-9731.2013.22.026

    15. [15]

      LI Wen, REN Yinghui, ZHAO Fengqi. Effects of Lead Complex-Based BTATz on Thermal Behaviors, Non-Isothermal Reaction Kinetics and Combustion Properties of DB/RDX-CMDB Propellants[J]. Acta Phys Chim Sin, 2013,29(10):2087-2094. doi: 10.3866/PKU.WHXB201308301

    16. [16]

      REN Yinghui, LI Wen, ZHANG Xianbo. Nonisothermal Decomposition Kinetics and Thermal Safety of Ag2(BTATz)·2H2O(BTATz=3, 6-Bis(1-H-1, 2, 3, 4-Tetrazole-5-Amino)-1, 2, 4, 5-Tetrazine)[J]. Chinese J Appl Chem, 2013,30(9):1036-1041.  

    17. [17]

      Yi J H, Zhang F Q, Wang B Z. Thermal Behaviors, Non-isothermal Decomposition Reaction Kinetics, Thermal Safety and Burning Rates of BTATz-CMDB Propellant[J]. J Hazard Mater, 2010,181(3):432-439.

    18. [18]

      Yi J H, Zhao F Q, Wang B Z. BTATz-HNIW-CMDB Propellants Decomposition Reaction Kinetics and Thermal Safety[J]. J Therm Anal Calorim, 2014,115(2):1227-1234. doi: 10.1007/s10973-013-3400-0

    19. [19]

      ZHANG Chao. Study on New High Burning Rate Component-Derivatives of BTATz:Synthesis, Characterization and Properties[D]. Xi'an:School of Chemical Engineering, Northwest University 2012(in Chinese).

    20. [20]

      XU Kangzhen, SONG Jirong, ZHAO Fengqi. Special Heat Capacity, Thermodynamic Properties and Adiabatic Time-to-Explosion of 1, 1-Diamino-2, 2-dinitroethylene[J]. Acta Chim Sin, 2007,65(25):2827-2831.  

    21. [21]

      Kissinger H E. Reaction Kinetics in Differential Thermal Analysis[J]. Anal Chem, 1957,29(11):1702-1706. doi: 10.1021/ac60131a045

    22. [22]

      Ozawa T B. A New Method of Analyzing Thermogravimatric Data[J]. Bull Chem Soc Jpn, 1965,38(11):1881-1886. doi: 10.1246/bcsj.38.1881

    23. [23]

      HU Rongzu, SHI Qizhen. Thermal Analysis Kinetics[M]. Beijing:SciencePress, 2001(in Chinese).

    24. [24]

      LI Dan. High Nitrogen Organic Metal Complexes and Energetic Ionic Compounds:Synthesis, Structure, Thermodynamic Properties and Theoretical Calculation[D]. Xi'an:School of Chemical Engineering, Northwest University, 2010(in Chinese).

    25. [25]

      Ren Y H, Yi J H, Zhao F Q. Synthesis, Decomposition Reaction Kinetics and Thermal Safety of Bismuth Complex of Picric Acid[J]. Chinese J Explos Propellants, 2011,33(5):19-24.

    26. [26]

      HUANG Huajiang. Practical Computer Simulation of Chemical Processes-MATLAB's Application in Chemical Engineering[M]. Beijing:Chemical Industry Press, 2004(in Chinese).

    27. [27]

      Hu R Z, Gao H X, Zhao F Q. Estimation of Critical Temperature of Thermal Explosion for Some Furazano-fused Cyclic Compouds Using Non-isothermal DSC[J]. Chinese J Energ Mater, 2009,17(6):635-642.

    28. [28]

      WANG Yun, FENG Changgen, ZHENG Rao. Prediction of Thermal Safety of Energetic Materials[J]. Chinese J Energy Mater, 2000,8(3):119-121.  

    29. [29]

      HU Rongzu, GAO Hongxu, ZHAO Fengqi. Thermal Safety of 1, 1'-Dimethyl -5, 5'-azotetrazole and 2, 2'-Dimethyl-5, 5'-azotetrazole[J]. Chinese J Energy Mater, 2011,19(2):126-131.  

    30. [30]

      ZHANG Xianbo. Synthesis, Crystal Structure, Thermal Properties and Performance of High Nitrogen Tetrazine BTATz Metal Salts/Complexes[D]. Xi'an:School of Chemical Engineering, Northwest University, 2013(in Chinese).

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    3. [3]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    4. [4]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    5. [5]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    6. [6]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    8. [8]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    12. [12]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    13. [13]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    19. [19]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(2)
  • Abstract views(1325)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return