Hydrothermal Synthesis of an Approximate Two-Dimensional Hexgonal Nickel Nanoplatelets
- Corresponding author: HU Hailong, hlhu@swust.edu.cn
Citation:
LI Yuhe, HU Hailong. Hydrothermal Synthesis of an Approximate Two-Dimensional Hexgonal Nickel Nanoplatelets[J]. Chinese Journal of Applied Chemistry,
;2017, 34(8): 918-927.
doi:
10.11944/j.issn.1000-0518.2017.08.160464
Valiev R Z. Structure and Mechanical Properties of Ultrafine-Grained Metals[J]. Mater Sci Eng A, 1997(234/235/236):59-66.
Gangopadhyay S, Hadjipanayis G C, Dale B. Magnetic Properties of Ultrafine Iron Particles[J]. Phys Rev, 1992,45(17):9778-9783. doi: 10.1103/PhysRevB.45.9778
Wang Z K, Kuok M H, Ng S C. Spin-Wave Quantization in Ferromagnetic Nickel Nanowires[J]. Phys Rev Lett, 2002,89(2)027201. doi: 10.1103/PhysRevLett.89.027201
Fendler J H. Atomic and Molecular Clusters in Membrane Mimetic Chemistry[J]. Chem Rev, 1987,87(5):877-899. doi: 10.1021/cr00081a002
Schmid G. Large Clusters and Colloids, Metals in the Embryonic State[J]. Chem Rev, 1992,92(8):1709-1727. doi: 10.1021/cr00016a002
Beecroft L L, Ober C K. Nanocomposite Materials for Optical Applications[J]. Chem Mater, 1997,9(6):1302-1317. doi: 10.1021/cm960441a
Shmid G, Chi L F. Metal Clusters and Colloids[J]. Adv Mater, 1998,10(7):515-527. doi: 10.1002/(ISSN)1521-4095
Shevchenko E V, Talapin D V, Schnablegger H. Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals:The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals[J]. J Am Chem Soc, 2003,125(30):9090-9101. doi: 10.1021/ja029937l
XU Xiaobing, LIU Xiansong, Meridor U. Ni Nanoparticles Synthesized by Microwave-assisted Polyol Method[J]. J Magn Mater Dev, 2008,39(6):33-35.
Chatterjee A, Chakravorty D. Preparation of Nickel Nanoparticles by Metal Organic Route[J]. Appl Phys Lett, 1992,60(1):138-140. doi: 10.1063/1.107350
Chu S Z, Wada K, Inoue S. Fabrication and Characteristics of Ordered Ni Nanostructures on Glass by Anodization and Direct Current Electrodeposition[J]. Chem Mater, 2002,14(11):4595-4602. doi: 10.1021/cm020272w
Park J, Kang E, Son S U. Monodisperse Nanoparticles of Ni and NiO:Synthesis, Characterization, Self-assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction[J]. Adv Mater, 2005,17(4):429-434. doi: 10.1002/(ISSN)1521-4095
Cordente N, Respaud M, Senocq F. Synthesis and Magnetic Properties of Nickel Nanorods[J]. Nano Lett, 2001,1(10):565-568. doi: 10.1021/nl0100522
Tani E, Yoshimura M, Somiya S. Hydrothermal Preparation of Ultrafine Monoclinic ZrO2 Powder[J]. J Am Ceram Soc, 1981,64(12)181.
Zhang D E, Ni X M, Li Y. Synthesis of Needle-Like Nickel Nanoparticles in Water-in-Oil Microemulsion[J]. Mater Lett, 2005,59(7):2011-2014.
Chang Z Q, Liu G, Zhang Z C. In Situ Coating of Micro Reactor Inner Wall with Nickel Nano-Particles Prepared by γ-Irradiation in Magnetic Field[J]. Radiat Phys Chem, 2004,69(8):445-449.
JIN Chuangui, TAN Jie. Preparation of Nickle Nanoparticles by Chemical Reduction Method[J]. J Anhui Univ Technol, 2007,24(1):36-38.
ZHAN Jing, YUE Jianfeng, ZHANG Chuanfu. Study on Preparation and Mechanism of Reduction and Growth of Ultrafine Nickel Powders[J]. J Mater Eng, 2011,7(1):10-15.
CHEN Zhe, CHEN Feng, XU Na. One-step Fabrication of Nickel Hierarchical Superstructures[J]. J Jilin Inst Chem Technol, 2012,29(9):46-50.
YADIAN Boluo, LIU Ping, WEI Liangming. Magnetic-field-induced Template-free Fabrication of Nickel Nanowires[J]. J Zhengzhou Univ(Nat Sci Ed), 2009,41(2):77-81.
MI Yuanzhu, YAN Xuemin. Preparation of Polygon Flake-shaped Nickel Powder via Solvothermal Route[J]. J Magn Mater Dev, 2010,41(3):22-25.
Kuang Y, Feng G, Li P S. Single-Crystalline Ultrathin Nickel Nanosheets Array from In Situ Topotactic Reduction for Active and Stable Electrocatalysis[J]. Angew Chem Int Ed, 2016,55(2):693-697. doi: 10.1002/anie.201509616
WANG Liying, CAI Lingjian, SHEN Di. Reducing Agents and Capping Agents in the Preparation of Metal Nanoparticles[J]. Prog Chem, 2010,22(4):580-592.
QI Hongyan, QI Yajun, LU Chaojing. Synthesis and Microstructure of β-Ni(OH)2 and NiO Single-crystal Nanostructures[J]. J Chinese Electron Microsc Soc, 2007,26(3):179-183.
Michael R, Kamath P V. On the Relationship Between α-Nickel Hydroxide and the Basic Salts of Nickel[J]. J Power Sources, 1998,70(1):118-121. doi: 10.1016/S0378-7753(97)02656-6
Sampanthar J T, Zeng H C. Arresting Butterfly-like Intermediate Nanocrystals of β-Co(OH)2 via Ethylenediamine-mediated Synthesis[J]. J Am Chem Soc, 2002,124:6668-6675. doi: 10.1021/ja012595j
FU Xiaoming, LIU Zhaowen. Hydrothermal Synthesis and Characterization of β-Ni(OH)2 Petal-shaped Sphere and Nanoplate[J]. Rare Met Cement Carb, 2012,40(2):29-32.
PENG Meixun, WANG Lingsen, SHEN Xiangqian. Microstructures and Formation Mechanism of Spherical β-Ni(OH)[J]. Chinese J Nonferrous Met, 2003,13(5):1130-1135.
PENG Meixun. Formation Mechanism of the Microstructures and the Electrochemical Performance for Spherical Nickel Hydroxide[D]. Changsha:Powder Mtallurgy Institute of Central South University, 2004(in Chinese).
Acharya R, Subbaiah T, Anand S. Effect of Preparation Parameters on Electrolytic Behaviour of Turbostratic Nickel Hydroxide[J]. Mater Chem Phys, 2003,81(1):45-49. doi: 10.1016/S0254-0584(03)00091-9
Acharya R, Subbaiah T, Anand S. Effect of Precipitating Agents on the Physicochemical and Electrolytic Characteristics of Nickel Hydroxide[J]. Mater Lett, 2003,57(20):3089-3095. doi: 10.1016/S0167-577X(03)00002-8
Yuan C Z, Zhang X G, Su L H. Facile Synthesis and Self-assembly of Hierarchical Porous NiO Nano/Micro Spherical Superstructures for High Performance Supercapacitors[J]. J Mater Chem, 2009,19(32):5772-5777. doi: 10.1039/b902221j
Guo C, Tang Y H, Zhang E L. Aggregation of Self-assembled Ni(OH)2 Nanosheets under Hydrothermal Conditions[J]. J Mater Sci, 2009,20(11):1118-1122.
LI Qunyan, LOU Zailiang, WANG Runa. Influence of Solution pH Value on Synthesis of Flower-Like Ni(OH)2 Microsphere[J]. Rare Met Mater Eng, 2009,38(S1):316-320.
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100029-0. doi: 10.3866/PKU.WHXB202407025
Yang Li , Jiachen Li , Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046
Zehao Zhang , Zheng Wang , Haibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-0. doi: 10.3866/PKU.WHXB202310029
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
Lisen Sun , Yongmei Hao , Zhen Huang , Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063
c(NiCl2)=36 mmol/L, c(NaOH)=0.11 mol/L, c(NH3·H2O)=0.57 mol/L, 1 mL hydrazinehydrate, reaction temperature=90 ℃ keeps for 17 h
The concentration of nickel and pH of solution: A.c(NiCl2)=3.6 mmol/L, pH=10.20; B.c(NiCl2)=18 mmol/L, pH=10.17; C.c(NiCl2)=73 mmol/L, pH=9.91; D.c(NiCl2)=0.18 mol/L, pH=9.12
A.c(NaOH)=0.054 mol/L, pH=9.26; B.c(NaOH)=0.11 mol/L, pH=9.85; C.c(NaOH)=0.22 mol/L, pH=10.23; D.c(NaOH)=0.43 mol/L, pH=10.44
A.c(NH3·H2O)=0.14 mol/L, pH=8.41; B.c(NH3·H2O)=0.28 mol/L, pH=8.92; C.c(NH3·H2O)=0.57 mol/L, pH=9.21; D.c(NH3·H2O)=2.26 mol/L, pH=9.64
A.c(NaOH)=0.054 mol/L, pH=9.82; B.c(NaOH)=0.054 mol/L, pH=10.07; C.c(NaOH)=0.054 mol/L, pH=10.29; D.c(NaOH)=0.054 mol/L, pH=10.45
A.c(NH3·H2O)=0.14 mol/L(Deionized Water 21.5 mL), pH=9.87; B.c(NH3·H2O)=0.75 mol/L(Deionized Water 21 mL), pH=9.94; C.c(NH3·H2O)=1.5 mol/L(Deionized Water 20 mL), pH=10.02; D.c(NH3·H2O)=2.26 mol/L(Deionized Water 14 mL), pH=10.36
A.50 ℃, pH=10.06; B.90 ℃, pH=10.05; C.130 ℃, pH=10.07; D.170 ℃, pH=10.04