Citation: DING Hongxia, WU Ying, LIU Zhengping. Preparation of Cationic Polymerizable Imdazolium Ionic Liquid-Acrylamide Copolymers and Their Inhibition Behaviors for Carbon Steel Corrosion in Hydrochloric Acid[J]. Chinese Journal of Applied Chemistry, ;2017, 34(8): 877-884. doi: 10.11944/j.issn.1000-0518.2017.08.160398 shu

Preparation of Cationic Polymerizable Imdazolium Ionic Liquid-Acrylamide Copolymers and Their Inhibition Behaviors for Carbon Steel Corrosion in Hydrochloric Acid

  • Corresponding author: LIU Zhengping, lzp@bnu.edu.cn
  • Received Date: 30 September 2016
    Revised Date: 4 May 2017
    Accepted Date: 7 June 2017

    Fund Project: Supported by the Program for Changjiang Scholars and Innovative Research Team in University and the Open Foundation of Beijing Key Laboratory of Materials for Energy Conversion and Storage

Figures(7)

  • Cationic polymerizable imdazolium ionic liquid-acrylamide copolymers as the corrosion inhibitors were successfully prepared by copolymerization of hydrophilic polymerizable ionic liquid, 1-methyl-3-[2-[(1-oxo-2-propenyl)oxy]ethyl]imdazoliumtetrafluoroborate(ACIMBF4), with acrylamide via inverse microemulsion polymerization. Various impact factors on the inhibition of carbon steel corrosion by hydrochloric acid including the cationic degree, the relative molecular mass of the copolymer, the concentration of copolymer solution and the absorption time were investigated simultaneously, and the corrosion mitigation mechanism was also discussed preliminary. The corrosion inhibition efficiency of cationic ionic liquid-acrylamide copolymers can reach higher than 90% by forming a protective adsorption film on the carbon steel. The corrosion inhibition ability of cationic copolymer depends on not only its cationic degree but also its relative molecular mass. Moreover, the corrosion inhibition efficiency increases with the increase of the concentration of cationic poly(ionic liquid) copolymer, and then decreases when the concentration of copolymer solution is too high. Furthermore, with the extension of the adsorption time, the corrosion rate of carbon steel is reduced gradually, and remains constant after approximately 40 h, namely the absorbing capacity of inhibitor on the carbon steel reaches the maximum.
  • 加载中
    1. [1]

      Singh A K, Quraishi M A. The Effect of Some Bis-Thiadiazole Derivatives on the Corrosion of Mild Steel in Hydrochloric Acid[J]. Corros Sci, 2010,52(35):1373-1385.  

    2. [2]

      Granese S L. Study of the Inhibitory Action of Nitrogen-Containing Compounds[J]. J Sci Eng Corros, 1988,44(26):322-327.  

    3. [3]

      Singh V P, Singh P, Singh A K. Synthesis, Structural and Corrosion Inhibition Studies on Cobalt(Ⅱ), Nickel(Ⅱ), Copper(Ⅱ), and Zinc(Ⅱ) Complexes with 2-Acetylthiophene Benzoyl Hydrazone[J]. Inorg Chim Acta, 2011,379(58):56-63.

    4. [4]

      Al-Amiery A A, Kadhum A A H, Alobaidy A H M. Novel Corrosion Inhibitor for Mild Steel in HCl[J]. Materials, 2014,7(4):662-672.

    5. [5]

      Matad P B, Mokshanatha P B, Hebbar N. Ketosulfone Drug as a Green Corrosion Inhibitor for Mild Steel in Acidic Medium[J]. Ind Eng Chem Res, 2014,53(15):8436-8444.

    6. [6]

      Shivakumar S S, Mohana K N. Centella Asiatica Extracts as Green Corrosion Inhibitor for Mild Steel in 0.5 M Sulphuric Acid Medium[J]. Adv Appl Sci Res, 2012,3(1):3097-3106.  

    7. [7]

      Rajendran S, Sri V G, Arockiaselvi J. Corrosion Inhibition by Plant Extracts:An Overview[J]. Bull Electrochem, 2005,21(10):367-377.

    8. [8]

      Singh V P, Singh P, Singh A K. Synthesis, Structural and Corrosion Inhibition Studies on Cobalt(Ⅱ), Nickel(Ⅱ), Copper(Ⅱ), and Zinc(Ⅱ) Complexes with 2-Acetylthiophene Benzoyl Hydrazone[J]. Inorg Chim Acta, 2011,379(78):56-63.

    9. [9]

      Zhao H. Innovative Applications of Ionic Liquids as "Green" Engineering Liquids[J]. Chem Eng Commun, 2006,193(28):1660-1677.

    10. [10]

      Welton T. Room-Temperature Ionic Liquids:Solvents for Synthesis and Catalysis[J]. Chem Rev, 1999,99(10):2071-2083.  

    11. [11]

      Zheng X W, Zhang S T, Li W P. Experimental and Theoretical Studies of Two Imidazolium-Based Ionic Liquids as Inhibitors for Mild Steel in Sulfuric Acid Solution[J]. Corros Sci, 2015,95(11):168-179.  

    12. [12]

      Pourghasemi Hanza A, Naderib R, Kowsari E. Corrosion Behavior of Mild Steel in H2SO4 Solution with 1, 4-Di[J]. Corros Sci, 2016,107(6):96-106.

    13. [13]

      Sasikumar Y, Adekunle A S, Olasunkanmi L O. Experimental, Quantum Chemical and Monte Carlo Simulation Studies on the Corrosion Inhibition of Some Alkyl Imidazolium Ionic Liquids Containing Tetrafluoroborate Anion on Mild Steel in Acidic Medium[J]. J Mol Liq, 2015,211(89):105-118.

    14. [14]

      Olivares-Xometl O, López-Aguilar C, Herrastí-González P. Adsorption and Corrosion Inhibition Performance by Three New Ionic Liquids on API 5L X52 Steel Surface in Acid Media[J]. Ind Eng Chem Res, 2014,53(23):9534-9543. doi: 10.1021/ie4035847

    15. [15]

      Bereket G, Yurt A, Turk H. Inhibition of Corrosion of Low Carbon Steel in Acidic Solution by Selected Polyelectrolytes and Polymers[J]. Anti-Corros Methods Mater, 2003,50(16):422-535.

    16. [16]

      Umoren S A, Ogbobe O, Okafor P C. Polyethylene Glycol and Polyvinyl Alcohol as Corrosion Inhibitors for Aluminium in Acidic Medium[J]. J Appl Polym Sci, 2007,105(35):3363-3370.

    17. [17]

      Rajendran S, Sridevi S P, Anthony N. Corrosion Behaviour of Carbon Steel in Polyvinyl Alcohol[J]. Anti-Corros Methods Mater, 2005,52(13):102-107.

    18. [18]

      Amin M A, El-Rehim S S A, El-Sherbini E E F. Polyacrylic Acid as a Corrosion Inhibitor for Aluminium in Weakly Alkaline Solutions.Part Ⅰ:Weight Loss, Polarization, Impedance EFM and EDX Studies[J]. Corros Sci, 2009,51(7):658-667.

    19. [19]

      Kroschwitz J I, Mark H F, Bikales N M, et al. Encyclopaedia of Polymer Science and Technology[M]. 2nd ed. Wiley-Interscience Publication:Chichester, UK, 1964:1.

    20. [20]

      Gao B, Zhang X, Sheng Y. Studies on Preparing and Corrosion Inhibition Behaviour of Quaternized Polyethyleneimine for Low Carbon Steel in Sulfuric Acid[J]. Mater Chem Phys, 2008,108(62):375-381.

    21. [21]

      Dobbelin M, Jovanovski V, Llarena I. Synthesis of Paramagnetic Polymers using Ionic Liquid Chemistry[J]. Polym Chem, 2011,2(6):275-1278.  

    22. [22]

      Rahman M T, Barikbin Z, Badruddoza A Z M. Monodisperse Polymeric Ionic Liquid Microgel Beads with Multiple Chemically Switchable Functionalities[J]. Langmuir, 2013,59(30):9535-9543.

    23. [23]

      Mecerreyes D. Polymeric Ionic Liquids:Broadening the Properties and Applications of Polyelectrolytes[J]. Prog Polym Sci, 2011,36(12):1629-1648. doi: 10.1016/j.progpolymsci.2011.05.007

    24. [24]

      Gao B, Lv Y, Jiu H. Synthesis and Properties of Cationic Polyacrylamide Containing Pyridine Quaternary Salt[J]. Polym Int, 2003,52(9):1468-1473. doi: 10.1002/(ISSN)1097-0126

    25. [25]

      Sayed S, Abd R, Hamdy H. Corrosion Inhibition of Aluminum by 1, 1-(Lauryl amido) Propyl Ammonium Chloride in HCl Solution[J]. Mater Chem Phys, 2001,70(23):64-72.

    26. [26]

      Atta A M, El-Mahdy G A, Allohedan H A. Poly(ionic liquid) Based on Modified Ionic Polyacrylamide for Inhibition Steel Corrosion in Acid Solution[J]. Int J Electrochem Sci, 2015,10(12):10389-10401.

    27. [27]

      Atta A M, El-Mahdy G A, Allohedan H A. Synthesis and Application of Poly Ionic Liquid-Based on 2-Acrylamido-2-Methyl Propane Sulfonic Acid as Corrosion Protective Film of Steel[J]. Int J Electrochem Sci, 2015,10(8):6106-6119.

    28. [28]

      Arellanes-Lozada P, Olivares-Xometl O, Guzmánú-Lucero D. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate)[J]. Materials, 2014,7(8):5711-5734. doi: 10.3390/ma7085711

    29. [29]

      HU Yaohong, ZHANG Shuling. Corrosion Inhibitor of Nnitrogenous Heterocyclic Compounds[J]. J Chem Corros Prot, 1991,4:10-14.  

    30. [30]

      YANG Wenzhi, HUANG Kuiyuan. Corrosion Inhibitor[M]. Beijing:Chemical Industry Press, 1989:90(in Chinese).

    31. [31]

      Qiu L G, Xie A J, Shen Y H. Understanding the Adsorption of Cationic Gemini Surfactants on Steel Surface in Hydrochloric Acid[J]. Mater Chem Phys, 2004,87(2/3):237-242.

  • 加载中
    1. [1]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    4. [4]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    6. [6]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    9. [9]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    15. [15]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    16. [16]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    17. [17]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    18. [18]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(1)
  • Abstract views(576)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return