Citation: WU Yehong, ZHAO Xia, HU Jun, LIN Yuan, WANG Qian. Preparation and Characterization of Functional Tobacco Mosaic Virus Spherical Nanoparticles[J]. Chinese Journal of Applied Chemistry, ;2017, 34(4): 379-384. doi: 10.11944/j.issn.1000-0518.2017.04.160302 shu

Preparation and Characterization of Functional Tobacco Mosaic Virus Spherical Nanoparticles

  • Corresponding author: LIN Yuan, linyuan@ciac.ac.cn
  • Received Date: 28 July 2016
    Revised Date: 31 August 2016
    Accepted Date: 8 October 2016

    Fund Project: Supported by the National Natural Science Foundation of China No.21429401, No.21374119

Figures(3)

  • Tobacco mosaic virus (TMV) due to its good biocompatibility, monodisperse, multivalent, low cost and other advantages, has been used as the basic building blocks used in optoelectronic devices, tissue engineering, vaccine vector, inorganic material preparation fields. However, compared to the rod like TMV, spherical TMV nanoparticles with no nucleic acid molecules are more resistant to environmental impact and have a larger specific surface area. The genetic and chemical modification of TMV, such as cysteine mutants of TMV (TMV TMV-Cys), lysine mutant of TMV (TMV-EPMK) and β-cyclodextrin (β-CD) modified TMV (TMV-β-CD) were conducted by thermal denaturation, and we studied their formation process and functionality. The results shows that the modified TMV can transit into the uniform spherical nanoparticles, and the functional groups exposed to the surface of the nanoparticles still keep their reactive ability.
  • 加载中
    1. [1]

      Miller R A, Presley A D, Francis M B. Self-Assembling Light-Harvesting Systems from Synthetically Modified Tobacco Mosaic Virus Coat Proteins[J]. J Am Chem Soc, 2007,129(11):3104-3109. doi: 10.1021/ja063887t

    2. [2]

      Luckanagul J, Lee L A, Nguyen Q L. Porous Alginate Hydrogel Functionalized with Virus as Three-Dimensional Scaffolds for Bone Differentiation[J]. Biomacromolecules, 2012,13(12):3949-3958. doi: 10.1021/bm301180c

    3. [3]

      Zan X J, Feng S, Balizan E. Facile Method for Large Scale Alignment of One Dimensional Nanoparticles and Control over Myoblast Orientation and Differentiation[J]. ACS Nano, 2013,7(10):8385-8396. doi: 10.1021/nn403908k

    4. [4]

      McCormick A A, Corbo T A, Wykoff-Clary S. Chemical Conjugate TMV-Peptide Bivalent Fusion Vaccines Improve Cellular Immunity and Tumor Protection[J]. Bioconjug Chem, 2006,17(5):1330-1338. doi: 10.1021/bc060124m

    5. [5]

      McCormick A A, Palmer K E. Genetically Engineered Tobacco Mosaic Virus as Nanoparticle Vaccines[J]. Expert Rev Vaccines, 2008,7(1):33-41. doi: 10.1586/14760584.7.1.33

    6. [6]

      Fan X Z, Pomerantseva E, Gnerlich M. Tobacco Mosaic Virus:A Biological Building Block for Micro/Nano/Bio Systems[J]. J Vac Sci Technol A, 2013,31(5)050815. doi: 10.1116/1.4816584

    7. [7]

      Niu Z W, Liu J, Lee L A. Biological Templated Synthesis of Water-Soluble Conductive Polymeric Nanowires[J]. Nano Lett, 2007,7(12):3729-3733. doi: 10.1021/nl072134h

    8. [8]

      Kaur G, Valarmathi M T, Potts J D. Regulation of Osteogenic Differentiation of Rat Bone Marrow Stromal Cells on 2D Nanorod Substrates[J]. Biomaterials, 2010,31(7):1732-1741. doi: 10.1016/j.biomaterials.2009.11.041

    9. [9]

      Chen L M, Zhao X, Lin Y. A Supramolecular Strategy to Assemble Multifunctional Viral Nanoparticles[J]. Chem Commun, 2013,49(83):9678-9680. doi: 10.1039/c3cc45559a

    10. [10]

      Lee S Y, Royston E, Culver J N. Improved Metal Cluster Deposition on A Genetically Engineered Tobacco Mosaic Virus Template[J]. Nanotechnology, 2005,16(7):S435--S441. doi: 10.1088/0957-4484/16/7/019

    11. [11]

      Lim J S, Kim S M, Lee S Y. Biotemplated Aqueous-Phase Palladium Crystallization in the Absence of External Reducing Agents[J]. Nano Lett, 2010,10(10):3863-3867. doi: 10.1021/nl101375f

    12. [12]

      Smith M L, Lindbo J A, Dillard-Telm S. Modified Tobacco Mosaic Virus Particles as Scaffolds for Display of Protein Antigens for Vaccine Applications[J]. Virology, 2006,348(2):475-488. doi: 10.1016/j.virol.2005.12.039

    13. [13]

      Wei D Q, Zhao X, Chen L M. Viral Nanoparticles as Antigen Carriers:Influence of Shape on Humoral Immune Responses in Vivo[J]. RSC Adv, 2014,4(44):23017-23021. doi: 10.1039/c4ra01821d

    14. [14]

      Atabekov J, Nikitin N, Arkhipenko M. Thermal Transition of Native Tobacco Mosaic Virus and RNA-Free Viral Proteins into Spherical Nanoparticles[J]. J Gen Virol, 2011,92(2):453-456. doi: 10.1099/vir.0.024356-0

    15. [15]

      Karpova O, Nikitin N, Chirkov S. Immunogenic Compositions Assembled from Tobacco Mosaic Virus-Generated Spherical Particle Platforms and Foreign Antigens[J]. J Gen Virol, 2012,93(2):400-407. doi: 10.1099/vir.0.036293-0

    16. [16]

      Trifonova E, Nikitin N, Gmyl A. Complexes Assembled from TMV-Derived Spherical Particles and Entire Virions of Heterogeneous Nature[J]. J Biomol Struct Dyn, 2014,32(8):1193-1201. doi: 10.1080/07391102.2013.816868

    17. [17]

      Higuchi R, Krummel B, Saiki R K. A General-Method of in Vitro Preparation and Specific Mutagenesis of DNA Fragments-Study of Protein and DNA Interactions[J]. Nucleic Acids Res, 1988,16(15):7351-7367. doi: 10.1093/nar/16.15.7351

    18. [18]

      Bruckman M A, Kaur G, Lee L A. Surface Modification of Tobacco Mosaic Virus with "Click" Chemistry[J]. Chembiochem, 2008,9(4):519-523. doi: 10.1002/(ISSN)1439-7633

    19. [19]

      Dobrov E N, Nikitin N A, Trifonova E A. Beta-Structure of the Coat Protein Subunits in Spherical Particles Generated by Tobacco Mosaic Virus Thermal Denaturation[J]. J Biomol Struct Dyn, 2014,32(5):701-708. doi: 10.1080/07391102.2013.788983

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    7. [7]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    13. [13]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    14. [14]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    15. [15]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    18. [18]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

Metrics
  • PDF Downloads(0)
  • Abstract views(804)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return