Citation: LI Jiting, HU Bingcheng, YU Chuanming, LIU Cheng. Synthesis and Properties of Pyridyl Dithienylethene Axially Coordinated to Mn (Ⅱ)-Porphyrin[J]. Chinese Journal of Applied Chemistry, ;2017, 34(4): 402-407. doi: 10.11944/j.issn.1000-0518.2017.04.160291 shu

Synthesis and Properties of Pyridyl Dithienylethene Axially Coordinated to Mn (Ⅱ)-Porphyrin

  • Corresponding author: HU Bingcheng, hubc@mail.njust.edu.cn
  • Received Date: 13 July 2016
    Revised Date: 23 August 2016
    Accepted Date: 10 October 2016

Figures(7)

  • Organic photochromic materials have bottleneck problems including low photon yield, poor fatigue resistance and destruction of recorded information after read-out in practical application. In this paper the pyridyl dithienylethene axially coordinated to Mn (Ⅱ)-porphyrin was synthesized by 1-(5-chloro-2-methylthien-3-yl)-2-[5-pyridyl-2-methylthien-3-yl]cyclopentene via halogenation, Friedel-Crafts acylation, McMurry coupling, Suzuki coupling by using 2-methyl-thiophene as the starting material coordinating with Mn (Ⅱ)-porphyrin. Photochromic properties and fatigue resistance of the target compound were investigated by ultraviolet-visible (UV-Vis) spectrum, and the function of nondestructive readout was also researched by fluorescence spectrum. The experimental results indicate that the target compound possesses good photochromic properties and fatigue resistance, and the "write-read-erase" process can be achieved by using the light of 254 nm, 490 nm, and 550 nm, respectively, without concomitant loss of data which is expected to be used in binary storage devices.
  • 加载中
    1. [1]

      Zhang C, Zhou H P, Liao L Y. Luminescence Modulation of Upconversion Nanopatterns by a Photochromic Diarylethene:Rewritable Optical Storage with Nondestructive Readout[J]. Adv Mater, 2010,22(5):633-637. doi: 10.1002/adma.v22:5

    2. [2]

      Irie M, Fukaminato T, Matsuda K. Photochromism of Diarylethene Molecules and Crystals:Memories, Switches, and Actuators[J]. Chem Rev, 2014,114(24):12174-12277. doi: 10.1021/cr500249p

    3. [3]

      Berkovic G, Krongauz V, Weiss V. Spiropyrans and Spirooxazines for Memories and Switches[J]. Chem Rev, 2000,100(5):1741-1753. doi: 10.1021/cr9800715

    4. [4]

      Pu S Z, Ding H C, Liu G. Multiaddress Fluorescence Switch Based on a New Photochromic Diarylethene with a Triazole-linked Rhodamine Unit[J]. J Phys Chem C, 2014,118(13):7010-7017. doi: 10.1021/jp5001495

    5. [5]

      FAN Meigong. The Fundamental Theory of Photochemistry and Photonic Materials[M]. Beijing:Science Press, 2001:187(in Chinese). 

    6. [6]

      Yokoyama Y. Fulgides for Memories and Switches[J]. Chem Rev, 2000,100(5)1717. doi: 10.1021/cr980070c

    7. [7]

      Tian H, Yang S J. Recent Progress on Diarylethene Based Photochromic Switches[J]. Chem Soc Rev, 2004,33(2):85-97. doi: 10.1039/b302356g

    8. [8]

      John C C, Robert J G. Organic Photochromic and Termochromic Compound[M]. NY:Plenum Press, 1999:11-83

    9. [9]

      SONG Xiumei, FENG Zongcai, WANG Zhaoyang. Synthesis, Characterization and Photoisomerization Properties of Pseudostilbene Azobenzenes[J]. Chinese J Appl Chem, 2016,33(4):442-451. doi: 10.11944/j.issn.1000-0518.2016.04.150282

    10. [10]

      Cui X N, Zhao Y H, Ma J. Reversible Photoswitching of Triplet-Triplet Annihilation Upconversion Using Diarylethene Photochromic Switches[J]. J Am Chem Soc, 2014,136(26):9256-9259. doi: 10.1021/ja504211y

    11. [11]

      Wigglesworth T J, Myles A J, Branda N R. High-Content Photochromic Polymers Based on Dithienylethene[J]. Eur J Org Chem, 2005(7):1233-1238.

    12. [12]

      de Jong J J D, Hania P R, Pagzlys A. Light-Driven Dynamic Pattern Formation[J]. Angew Chem Int Ed, 2005,44(16):2373-2376. doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Irie M, Fukaminato T, Sasaki T. Organic Chemistry:A Digital Fluorescent Molecular Photoswitch[J]. Nature, 2002,420(6917):759-760. doi: 10.1038/420759a

    14. [14]

      Kobatake S, Mastsumoto Y, Irie M. Conformational Control of Photochromic Reactivity in a Diarylethene Single Crystal[J]. Angew Chem Int Ed, 2005,44(14):2148-2151. doi: 10.1002/(ISSN)1521-3773

    15. [15]

      Sud D, Norsten T B, Branda N R. Photoswitching of Stereoselectivity in Catalysis Using a Copper Dithienylethene Complex[J]. Angew Chem Int Ed, 2005,117(13):2055-2057. doi: 10.1002/(ISSN)1521-3757

    16. [16]

      Kawai B T, Nakashima Y, Irie M. A Novel Photoresponsive p-Conjugated Polymer Based on Diarylethene and Its Photoswitching Effect in Electrical Conductivity[J]. Adv Mater, 2005,17(3):309-314. doi: 10.1002/(ISSN)1521-4095

    17. [17]

      Wei S, Zheng C, Liu G. A Multi-state Fluorescence Swtich Based on a New Photochromic Diarylethene with a Di-(ethyl-1, 8-naphthalimidyl) Amine Unit[J]. J Photochem Photobiol A, 2015,307:48-53.  

    18. [18]

      Kärnbratt J, Hammarson M, Li S. Photochromic Supramolecular Memory with Nondestructive Readout[J]. Angew Chem Int Ed, 2010,122(10):1854-1857.  

    19. [19]

      LI Lei, QI Dongdong, SUN Xun. Diarylethene-based Photochromic Tetraazaporphyrizine:Photochromisim and Possibility of Nondestructive Reading in Mid-infrared[J]. Chinese J Inorg Chem, 2008,24(8):1284-1289.  

    20. [20]

      Viel P, Walter J, Bellon S. Versatile and Nondestructive Photochemical Process for Biomolecule Immobilization[J]. Langmuir, 2013,29(6):2075-2082. doi: 10.1021/la304941a

    21. [21]

      Seol M L, Choi S J, Choi J M. Hybrid Porphyrin-silicon Nanowire Field-effect Transistor by Opto-electrical Excitation[J]. ACS Nano, 2012,6(9):7885-7892. doi: 10.1021/nn303260a

    22. [22]

      Nilsson J R, O'Sullivan M C, Li S. A Photoswitchable Supramolecular Complex with Release-and-report Capabilities[J]. Chem Commun, 2015,51(15):847-850.  

    23. [23]

      Norsten B T, Branda N R. Axially Coordinated Porphyrinic Photochromes for Nondestructive Information Processing[J]. Adv Mater, 2001,13(5):347-349. doi: 10.1002/(ISSN)1521-4095

    24. [24]

      Myles A J, Branda N R. Controlling Photoinduced Electron Transfer Within a Hydrogen-bonded Porphyrin-phenoxynaphthacenequinone Photochromic System[J]. J Am Chem Soc, 2001,123(1):177-178. doi: 10.1021/ja002733p

    25. [25]

      Williams D E, Rietman J A, Maier J M. Energy Transfer on Demand:Photoswitch-Directed Behavior of Metal-Porphyrin Frameworks[J]. J Am Chem Soc, 2014,136(34):11886-11889. doi: 10.1021/ja505589d

    26. [26]

      Terazono Y, Kodis G, Andr asson J. Photonic Control of Photoinduced Electron Transfer via Switching of Redox Potentials in a Photochromic Moiety[J]. J Phys Chem B, 2004,108(6):1812-1814. doi: 10.1021/jp037005d

    27. [27]

      Straight S D, Andr éasson J, Kodis S G. Molecular and Inhibit Gates Based on Control of Porphyrin Fluorescence by Photochromes[J]. J Am Chem Soc, 2005,127(26):9403-9409. doi: 10.1021/ja051218u

    28. [28]

      Lucas L N, de Jong J J D de. Syntheses of Dithienylcyclopentene Optical Molecular Switches[J]. Eur J Org Chem, 2003,2003(1):155-166. doi: 10.1002/1099-0690(200301)2003:1<155::AID-EJOC155>3.0.CO;2-S

    29. [29]

      Zerner M, Gouterman M. Porphyrins:Ⅳ.Extended Hückel Calculations on Transition Complexes[J]. Theor Chim Acta, 1966,4(1):44-63. doi: 10.1007/BF00526010

    30. [30]

      Kobatake S, Uchida K, Tsuchida E, Irie M. Photochromism of Diarylethenes Having Isopropyl Groups at the Reactive Carbons:Thermal Cycloreversion of the Closed-ring Isomers[J]. Chem Lett, 2000,29(11):1340-1341. doi: 10.1246/cl.2000.1340

  • 加载中
    1. [1]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    2. [2]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    3. [3]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    4. [4]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    13. [13]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    14. [14]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    15. [15]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    16. [16]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    17. [17]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    20. [20]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

Metrics
  • PDF Downloads(0)
  • Abstract views(1125)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return