Citation: XU Yuzhong, TONG Yongfen, TAN Licheng, CHEN Yiwang. Block Copolymer Electrolytes for Lithium Batteries[J]. Chinese Journal of Applied Chemistry, ;2017, 34(3): 245-261. doi: 10.11944/j.issn.1000-0518.2017.03.160438 shu

Block Copolymer Electrolytes for Lithium Batteries

  • Corresponding author: TONG Yongfen, tongyongfen@nchu.edu.cn CHEN Yiwang, ywchen@ncu.edu.cn
  • Received Date: 2 November 2016
    Revised Date: 22 December 2016
    Accepted Date: 27 December 2016

    Fund Project: Aeronautical Science Foundation of China No.2015ZF56020Science and Technology Project of Education and Department of Jiangxi Province No.DB201602034Special Research Fund for the Doctoral Program of Higher Education No.20133601120006Special Research Fund for the Doctoral Program of Higher Education No.20133601110004Supported by the National Natural Science Foundation of China No.21404054

Figures(23)

  • Ion-conducting block copolymers(BCPs) as conducting materials have attracted significant interests in solid state lithium batteries. BCP self-assembly offers promise for designing ordered materials with nanoscale domains. Such nanostructures provide a facile method for introducing sufficient mechanical stability into polymer electrolyte membranes, while maintaining the ionic conductivity at levels similar to corresponding solvent-free homopolymer electrolytes. This ability to simultaneously control conductivity and mechanical integrity provides opportunities for the fabrication of sturdy, yet easily processable, solid-state lithium batteries. This review presents a brief overview of recent progress in ion-conducting block copolymers base on polyoxyethylene and single ion conductors. We also summarize some experimental studies of BCP electrolytes with respect to the effects of morphology on ionic conductivity. Finally, we present some remaining challenges for BCP electrolytes and highlight several important areas for future research.
  • 加载中
    1. [1]

      Fenton D E, Parker J M, Wright P V. Complexes of Alkaline Metal Ions with Poly(ethylene oxide)[J]. Polymer, 1973,14(4):589-594.

    2. [2]

      Armand M,Chabagno J M,Duclot M T.[C]//Proceedings of the Second International Meeting on Solid Electrolytes. St. Andrew,Scotland,1978.

    3. [3]

      Giles J R M, Gray F M, Maccallum J R. Synthesis and Characterization of ABA Block Copolymer-Based Polymer Electrolytes[J]. Polymer, 1987,28(11):1977-1981. doi: 10.1016/0032-3861(87)90309-0

    4. [4]

      Gray F M, MacCallum J R, Vincent C A. Novel Polymer Electrolytes Based on ABA Block Copolymers[J]. Macromolecules, 1988,21(2):392-397. doi: 10.1021/ma00180a018

    5. [5]

      Khan I M, Fish D, Delaviz Y. ABA Triblock Comb Copolymers with Ologo(oxyethylene) Side Chains as Matrix for Ion Transport[J]. Macromol Chem, 1989,190(5):1069-1078. doi: 10.1002/macp.1989.021900515

    6. [6]

      Gray F M. Solid Polymer Electrolytes[M]. NewYork etc.:VCH,1991.

    7. [7]

      Berthier C, Gorecki W, Minier M. Microscopic Investigation of Ionic Conductivity in Alkali Metal Salts-Poly(ethylene oxide) Adducts[J]. Solid State Ionics, 1983,11(1):91-95. doi: 10.1016/0167-2738(83)90068-1

    8. [8]

      Zuo X, Liu X M, Cai F. A Novel All-Solid Electrolyte Based on a Copolymer of Poly-(methoxy/hexadecal-Poly(ethylene glycol) methacrylate) for Lithium-Ion Cell[J]. J Mater Chem, 2012,22(41):22265-22271. doi: 10.1039/c2jm34270g

    9. [9]

      Koh J H, Lee K J, Seo J A. Amphiphilic Polymer Electrolytes Consisting of PVC-g-POEM Comb-Like Copolymer and LiCF3SO3[J]. J Polym Sci Part B:Polym Phys, 2009,47(151):1443-1451.

    10. [10]

      Yoshimoto N, Shimamura O, Nishimura T. A Novel Polymeric Electrolyte Based on a Copolymer Containing Self-Assembled Stearylate Moiety for Lithium-Ion Batteries[J]. Electrochem Commun, 2009,11(2):481-483. doi: 10.1016/j.elecom.2008.12.030

    11. [11]

      Abetz V, Goldacker T. Formation of Superlattices via Blending of Block Copolymers[J]. Macromol Rapid Commun, 2000,21(1):16-34. doi: 10.1002/(ISSN)1521-3927

    12. [12]

      Matsen M W, Thompson R B. Equilibrium Behavior of Symmetric ABA Triblock Copolymer Melts[J]. J Chem Phys, 1999,111(15):7139-7146. doi: 10.1063/1.480006

    13. [13]

      Gomez E D, Panday A, Feng E H. Effect of Ion Distribution on Conductivity of Block Copolymer Electrolytes[J]. Nano Lett, 2009,9(3):1212-1216. doi: 10.1021/nl900091n

    14. [14]

      Panday A, Mullin S, Gomez E D. Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes[J]. Macromolecules, 2009,42(13):4632-4637. doi: 10.1021/ma900451e

    15. [15]

      Yuan R, Teran A A, Gurevitch I. Ionic Conductivity of Low Molecular Weight Block Copolymer Electrolytes[J]. Macromolecules, 2013,46(3):914-921. doi: 10.1021/ma3024552

    16. [16]

      Bouchet R, Phan T N T, Beaudoin E. Charge Transport in Nanostructured PS-PEO-PS Triblock Copolymer Electrolytes[J]. Macromolecules, 2014,47(8):2659-2665. doi: 10.1021/ma500420w

    17. [17]

      Trapa P E, Won Y Y, Mui S C. Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries[J]. J Electrochem Soc, 2005,152(1):A1-A5. doi: 10.1149/1.1824032

    18. [18]

      Hu Q, Osswald S, Daniel R. Graft Copolymer-Based Lithium-Ion Battery for High-Temperature Operation[J]. J Power Sources, 2011,196(13):5604-5610. doi: 10.1016/j.jpowsour.2011.03.001

    19. [19]

      Niitani T, Shimada M, Kawamura K. Characteristics of New-Type Solid Polymer Electrolyte Controlling Nano-Structure[J]. J Power Sources, 2005,146(1):386-390.  

    20. [20]

      Niitani T, Shimada M, Kawamura K. Synthesis of Li+ Ion Conductive PEO-PSt Block Copolymer Electrolyte with Microphase Separation Structure[J]. Electrochem Solid-State Lett, 2005,8(8):A385-A388. doi: 10.1149/1.1940491

    21. [21]

      Devaux D, Gl D, Phan T N T. Optimization of Block Copolymer Electrolytes for Lithium Metal Batteries[J]. Chem Mater, 2015,27(13):4682-4692. doi: 10.1021/acs.chemmater.5b01273

    22. [22]

      Wang F K, Lu X, He C. Some Recent Developments of Polyhedral Oligomeric Silsesquioxane(POSS)-Based Polymeric Materials[J]. J Mater Chem, 2011,21(9):2775-2782. doi: 10.1039/C0JM02785E

    23. [23]

      Tan B H, Hussain H, Leong Y W. Tuning Self-Assembly of Hybrid PLA-P(MA-POSS) Block Copolymers in Solution via Stereocomplexation[J]. Polym Chem, 2013,4(4):1250-1259. doi: 10.1039/C2PY20823G

    24. [24]

      Kim D G, Sohn H S, Kim S K. Star-Shaped Polymers Having Side Chain POSS Groups for Solid Polymer Electrolytes; Synthesis, Thermal Behavior, Dimensional Stability, and Ionic Conductivity[J]. J Polym Sci Part A:Polym Chem, 2012,50(17):3618-3627. doi: 10.1002/pola.v50.17

    25. [25]

      Kim S K, Kim D G. Organic/Inorganic Hybrid Block Copolymer Electrolytes with Nanoscale Ion-Conducting Channels for Lithium Ion Batteries[J]. Macromolecules, 2012,45(23):9347-9356. doi: 10.1021/ma301404q

    26. [26]

      Wilms D, Schomer M, Wurm F. Hyperbranched PEG by Random Copolymerization of Ethylene Oxide and Glycidol[J]. Macromol Rapid Commun, 2010,31(20):1811-1815. doi: 10.1002/marc.v31:20

    27. [27]

      Marzantowicz M, Dygas J R, Krok F. Star-Branched Poly(ethylene oxide) LiN(CF3SO2)2:A Promising Polymer Electrolyte[J]. J Power Sources, 2009,194(1):51-57. doi: 10.1016/j.jpowsour.2009.01.011

    28. [28]

      Shim J, Kim D G, Lee J H. Synthesis and Properties of Organic/Inorganic Hybrid Branched-Graft Copolymers and Their Application to Solid-State Electrolytes for High-Temperature Lithium-Ion Batteries[J]. Polym Chem, 2014,5(10):3432-3442. doi: 10.1039/c4py00123k

    29. [29]

      Shim J, Kim D G, Kim H J. Polymer Composite Electrolytes Having Core Shell Silica Fillers with Anion-Trapping Boron Moiety in the Shell Layer for All-Solid-State Lithium-Ion Batteries[J]. ACS Appl Mater Inter, 2015,7(14):7690-7701. doi: 10.1021/acsami.5b00618

    30. [30]

      Kato T. Self-Assembly of Phase-Segregated Liquid Crystal Structures[J]. Science, 2002,295(5564):2414-2418. doi: 10.1126/science.1070967

    31. [31]

      Shimura H, Yoshio M, Hoshino K. Noncovalent Approach to One-Dimensional Ion Conductors:Enhancement of Ionic Conductivities in Nanostructured Columnar Liquid Crystals[J]. J Am Chem Soc, 2008,130(5):1759-1765. doi: 10.1021/ja0775220

    32. [32]

      Stoeva Z, Lu Z, Ingram M D. A New Polymer Electrolyte Based on a Discotic Liquid Crystal Triblock Copolymer[J]. Electrochim Acta, 2013,93:279-286. doi: 10.1016/j.electacta.2013.01.060

    33. [33]

      Gopinadhan M, Majewski P W, Osuji C O. Facile Alignment of Amorphous Poly(ethylene oxide) Microdomains in a Liquid Crystalline Block Copolymer Using Magnetic Fields:Toward Ordered Electrolyte Membranes[J]. Macromolecules, 2010,43(7):3286-3293. doi: 10.1021/ma9026349

    34. [34]

      Majewski P W, Gopinadhan M, Jang W S. Anisotropic Ionic Conductivity in Block Copolymer Membranes by Magnetic Field Alignment[J]. J Am Chem Soc, 2010,132(49):17516-17522. doi: 10.1021/ja107309p

    35. [35]

      Zhou Y, Ahn S, Lakhman R K. Tailoring Crystallization Behavior of PEO-Based Liquid Crystalline Block Copolymers Through Variation in Liquid Crystalline Content[J]. Macromolecules, 2011,44(10):3924-3934. doi: 10.1021/ma102922u

    36. [36]

      Choi S, Cho B K. Liquid Crystalline and Ion-Conducting Properties of Mesogenic Dendron-Coil-Dendron Copolymers:Characterization of LC Phases Using Normalized Conductivity[J]. Soft Matter, 2013,9(6):4241-4248.  

    37. [37]

      Tong Y, Chen L, He X. Sequential Effect and Enhanced Conductivity of Star-Shaped Diblock Liquid-Crystalline Copolymers for Solid Electrolytes[J]. J Power Sources, 2014,247:786-793. doi: 10.1016/j.jpowsour.2013.08.139

    38. [38]

      Tong Y, Chen L, He X. Free Mesogen Assisted Assembly of the Star-Shaped Liquid-Crystalline Copolymer/Polyethylene Oxide Solid Electrolytes for Lithium Ion Batteries[J]. Electrochim Acta, 2014,118:33-40. doi: 10.1016/j.electacta.2013.11.072

    39. [39]

      Tong Y, Chen L, He X. Mesogen-Controlled Ion Channel of Star-Shaped Hard-Soft Block Copolymers for Solid-State Lithium-Ion Battery[J]. Polym Sci,Part A:Polym Chem, 2013,51(20):4341-4350. doi: 10.1002/pola.26847

    40. [40]

      Stoeva Z, Lu Z, Ingram M D. A New Polymer Electrolyte Based on a Discotic Liquid Crystal Triblock Copolymer[J]. Electrochim Acta, 2013,93:279-286. doi: 10.1016/j.electacta.2013.01.060

    41. [41]

      Sun J, Liao X, Minor A M. Morphology-Conductivity Relationship in Crystalline and Amorphous Sequence-Defined Peptoid Block Copolymer Electrolytes[J]. J Am Chem Soc, 2014,136(42):14990-14997. doi: 10.1021/ja5080689

    42. [42]

      Ryu S W, Trapa P E, Olugebefola S C. Effect of Counter Ion Placement on Conductivity in Single-Ion Conducting Block Copolymer Electrolytes[J]. J Electrochem Soc, 2005,152(1):A158-A163. doi: 10.1149/1.1828244

    43. [43]

      Ryu S W, Mayes A M. Synthesis and Properties of Heptadecane-Functionalized Poly(propylene oxide) Based Single-Ion Polymer Electrolytes[J]. Polymer, 2008,49(9):2268-2273. doi: 10.1016/j.polymer.2008.03.022

    44. [44]

      Rolland J, Poggi E, Vlad A. Single-Ion Diblock Copolymers for Solid-State Polymer Electrolytes[J]. Polymer, 2015,68:344-352. doi: 10.1016/j.polymer.2015.04.056

    45. [45]

      Feng S, Shi D, Liu F. Single Lithium-Ion Conducting Polymer Electrolytes Based on Poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] Anions[J]. Electrochim Acta, 2013,93:254-263. doi: 10.1016/j.electacta.2013.01.119

    46. [46]

      Bouchet R, Maria S, Meziane R. Single-Ion BAB Triblock Copolymers as Solid Electrolytes for Lithium Metal Batteries[J]. Nat Mater, 2013,12(5):452-457. doi: 10.1038/nmat3602

    47. [47]

      Porcarelli L, Shaplov A S, Salsamendi M. Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries[J]. ACS Appl Mater Int, 2016,8(16):10350-10359. doi: 10.1021/acsami.6b01973

    48. [48]

      Singh M, Odusanya O, Wilmes G M. Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes[J]. Macromolecules, 2007,40(13):4578-4585. doi: 10.1021/ma0629541

    49. [49]

      Sax J, Ottino J M. Modeling of Transport of Small Molecules in Polymer Blends:Application of Effective Medium Theory[J]. Polym Eng Sci, 1983,23(3):165-176. doi: 10.1002/(ISSN)1548-2634

    50. [50]

      Jinnai H, Yasuda K, Nishi T. Three-Dimensional Observations of Grain Boundary Morphologies in a Cylinder-Forming Block Copolymer[J]. Macromol Symp. WILEY-VCH, 2006,245(1):170-174.  

    51. [51]

      Nishikawa Y, Kawada H, Hasegawa H. Grain Boundary Morphology of Lamellar Microdomains[J]. Acta Polymer, 1993,44(4):192-200. doi: 10.1002/actp.1993.010440404

    52. [52]

      Jinnai H, Sawa K, Nishi T. Direct Observation of Twisted Grain Boundary in a Block Copolymer Lamellar Nanostructure[J]. Macromolecules, 2006,39(17):5815-5819. doi: 10.1021/ma0600153

    53. [53]

      Inceoglu S, Rojas A A, Devaux D. Morphology Conductivity Relationship of Single-Ion-Conducting Block Copolymer Electrolytes for Lithium Batteries[J]. ACS Macro Lett, 2014,3(6):510-514. doi: 10.1021/mz5001948

    54. [54]

      Kim B, Ahn H, Kim J H. Transition Behavior and Ionic Conductivity of Lithium Perchlorate-Doped Polystyrene-b-Poly(2-vinylpyridine)[J]. Polymer, 2009,50(15):3822-3827. doi: 10.1016/j.polymer.2009.05.022

    55. [55]

      Naidu S, Ahn H, Gong J. Phase Behavior and Ionic Conductivity of Lithium Perchlorate-Doped Polystyrene-b-poly(2-vinylpyridine) Copolymer[J]. Macromolecules, 2011,44(15):6085-6093. doi: 10.1021/ma200429v

    56. [56]

      Xu T, Zvelindovsky A V, Sevink G J A. Electric Field Alignment of Asymmetric Diblock Copolymer Thin Films[J]. Macromolecules, 2005,38:10788-10798. doi: 10.1021/ma050521c

    57. [57]

      Vukovic I, Friedrich H, Merino D H. Shear-Induced Orientation of Gyroid PS-b-P4VP(PDP) Supramolecules[J]. Macromol Rapid Commun, 2013,34:1208-1212. doi: 10.1002/marc.v34.15

  • 加载中
    1. [1]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    7. [7]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    12. [12]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    13. [13]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    14. [14]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(5)
  • Abstract views(1279)
  • HTML views(183)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return