Citation: WU Yan, GUO Zhaonan, LYU Chengwei, YU Shijun. Synthesis and Properties of Polyesters Containing 8-Hydroxyquinoline Side Groups and Their Zn (Ⅱ), Al (Ⅲ) Complexes[J]. Chinese Journal of Applied Chemistry, ;2017, 34(3): 338-344. doi: 10.11944/j.issn.1000-0518.2017.03.160304 shu

Synthesis and Properties of Polyesters Containing 8-Hydroxyquinoline Side Groups and Their Zn (Ⅱ), Al (Ⅲ) Complexes

  • Corresponding author: YU Shijun, sjyu@lnnu.edu.cn
  • Received Date: 28 July 2016
    Revised Date: 2 September 2016
    Accepted Date: 8 October 2016

    Fund Project: the Science and Technology Research Project of the Department of Education of Liaoning Province No.L2012383Supported by the National Natural Science Foundation of China No.21403100

Figures(7)

  • Two kinds of novel polyesters containing 8-hydroxyquinoline side groups (P5, P6) were synthesized by multistep reactions. Subsequently, polyesters P5 and P6 reacted with zinc acetate and aluminum chloride to get zinc complexes (P5-Zn, P6-Zn) and aluminum complexes (P5-Al, P6-Al). The structures and properties of polyesters and metal complexes were characterized by elemental analysis, IR, UV-Vis, 1H NMR, GPC, TG and fluorescence spectroscopy. Polyesters P5 and P6 can be easily dissolved in many solvents such as tetrahydrofurane (THF), N, N-dimethyl formamide (DMF), N, N-dimethyl acetamide (DMAC), dimethylsulfoxide (DMSO), and N-methyl pyrrolidone (NMP) at room temperature. Complexes P5-Zn, P6-Zn, P5-Al and P6-Al can be partially dissolved in DMF, DMAc, DMSO and NMP. The mass mean relative molecular mass (Mw) and polydispersity index (PDI) of P5 and P6 are 41200, 54200 and 1.50, 1.40, respectively. The 5% mass loss temperatures of P5, P6, P5-Zn, P6-Zn, P5-Al and P6-Al are 261.4, 291.1, 307.7, 306.2, 286.3 and 297.8℃, respectively. Fluorescence emission peaks of P5 and P6 in DMF solution appear at 432 and 429 nm, emitting weak purple light. Fluorescence emission peaks of P5-Zn, P6-Zn, P5-Al and P6-Al in solid state emerge at 550, 556, 531, 535 nm, emitting strong green light, which are all red-shifted to some extent, compared with their emission peaks in DMF solution located at 540, 537, 517 and 522 nm.
  • 加载中
    1. [1]

      Tang C W, Vanslyke S A. Organic Electrolum Inescent Diodes[J]. Appl Phys Lett, 1987,51(12):913-915. doi: 10.1063/1.98799

    2. [2]

      Patel K D, Patel H S. Synthesis, Spectroscopic Characterization and Thermal Studies of Some Divalent Transtion Metal Complexes of 8-Hydroxyquinoline[J]. Arab J Chem, 2013,23(3):1-8.  

    3. [3]

      Sosic I, Mirkovic B, Arenz K. Development of New Cathepsin B Inhibitors:Combining Bioisoster Replacements and Structure-based Design to Explore the Structure-activity Relationships of Nitroxoline Derivatives[J]. J Med Chem, 2013,56(2):521-533. doi: 10.1021/jm301544x

    4. [4]

      Du F F, Wang H, Bao Y Y. Conjugated Coordination Polymers Based on 8-Hydroxyquinoline Ligands:Impact of Polyhedral Oligomeric Silsesquioxanes on Solubility and Luminescence[J]. J Mater Chem, 2011,21(29):10859-10864. doi: 10.1039/c1jm11389e

    5. [5]

      Huang H L, Zhong C F, Zhou Y. Synthesis and Luminescent Properties of Polymeric Metal Complexes Containing Bis (8-hydroxyquinoline) Group[J]. Eur Polym J, 2008,44(9):2944-2950. doi: 10.1016/j.eurpolymj.2008.06.028

    6. [6]

      Jiang P, Huang W M, Li J T. A Soluble Coordination Polymer and Its Sol-gel-derived Amorphous Films:Synthesis and Third-order Nonlinear Optical Properties[J]. J Mater Chem, 2008,18(31):3688-3693. doi: 10.1039/b807358a

    7. [7]

      Kumar P, Misra A, Bhardwaj R. Synthesis and Characterization of Some 5-Coordinated Aluminum-8-Hydroxy Quinoline Derivatives for OLED Applications[J]. Displays, 2008,29(4):351-357. doi: 10.1016/j.displa.2007.10.006

    8. [8]

      Mishra A, Nayak P K, Periasamy N. Synthesis of 5-Alkoxymethyl-and 5-Aminomethyl-substituted 8-Hydroxy Quinoline Derivatives and Their Luminescent Al (Ⅲ) Complexes for OLED Applications[J]. Tetrahedron Lett, 2004,45(33):6265-6268. doi: 10.1016/j.tetlet.2004.06.089

    9. [9]

      Shi Y L, Fu Y Q, Lu C L. High Luminescence, Organic inorganic Nanocomposite Films with Covalently Linked 8-Hydroxyquinoline Anchored to ZnS Nanoparticles[J]. Dyes Pigm, 2010,85(1/2):66-72.  

    10. [10]

      Cao J, Liu J C, Deng W T. A Novel Self-assembly with Zinc Porphyrin Coordination Polymer for Enhanced Photocurrent Conversion in Supramolecular Solar Cells[J]. Electrochim Acta, 2013,112(12):515-521.  

    11. [11]

      Deng J Y, Guo L W, Xiu Q. Two Polymeric Metal Complexes Based on Polycarbazole Containing Complexes of 8-Hydroxyquinoline with Zn (Ⅱ) and Ni (Ⅱ) in the Backbone:Synthesis, Characterization and Photo-voltaic Applications[J]. Mater Chem Phys, 2012,133(1):452-458. doi: 10.1016/j.matchemphys.2012.01.064

    12. [12]

      Xiao L F, Liu Y, Xiu Q. Novel Polymeric Metal Complexes as Dye Sensitizers for Dye-sensitized Solar Cells Based on Poly Thiophene Containing Complexes of 8-Hydroxyquinoline with Zn (Ⅱ), Cu (Ⅱ) and Eu (Ⅲ) in the Side Chain[J]. Tetrahedron, 2010,66(15):2835-2842. doi: 10.1016/j.tet.2010.02.039

    13. [13]

      Gobec M, Kljun J, Sosic I. Structural Characterization and Biological Evaluation of a Clioquiol-ruthenium Complex with Copper-independent Antileukaemic Activity[J]. Dalton Trans, 2014,43(24):9045-9051. doi: 10.1039/c4dt00463a

    14. [14]

      Hossain S, Das S, Chakraborty A. S-shaped Hecanuclear Heterometallic[Ni8Ln2] Complexes[Ln (Ⅲ)=Gd, Tb, Dy and Ho]:Theoretical Modeling of the Magnetic Properties of the Gadolinium Analogue[J]. Dalton Trans, 2014,43(26):10164-10174. doi: 10.1039/c4dt00465e

    15. [15]

      Milja T E, KrupaV S, RaoT P. Synthesis, Characterization and Application of Uranyl Ion Imprinted Polymers of Aniline and 8-Hydroxy Quinoline Functionalized Aniline[J]. RSC Adv, 2014,4(58):30718-30724. doi: 10.1039/C4RA04780J

    16. [16]

      Wang G, Liang F S, Xie Z Y. Novel Bis (8-hydroxyquinoline) Phenolato aluminum Complexes for Organic Light-Emitting Diodes[J]. Synth Met, 2002,131(1/2/3):1-5.  

    17. [17]

      He Y, Zhong C F, He A H. Synthesis and Luminescent Properties of Novel Bisfunctional Polymeric Complexes Based on Carbazole and 8-Hydroxyquinoline Groups[J]. Mater Chem Phys, 2009,114(1):261-266. doi: 10.1016/j.matchemphys.2008.09.020

    18. [18]

      Mei Q B, Tong B H, Liang L Y. A Novel Way to Prepare Luminescent Hybrid Materials Derived from 5-Chloromehtyl-8-hydroxyquinoline and Silylated Monomer with Coordination to Aluminum Ion[J]. J Photochem Photobiol, 2007,191(2/3):216-221.  

    19. [19]

      Xia X W, Lu J M, Li H. Zn (II) Based Mixed Complex with 8-Hydroxyquinoline End Group Functionalized PSt and the Study of Fluorescent Properties[J]. Opt Mater, 2005,27(8):1350-1357. doi: 10.1016/j.optmat.2004.09.016

    20. [20]

      YU Shijun, LU Yan, WU Siyu. Synthesis and Properties of Containing Schiff Base Side Groups and Their Zinc Complexes[J]. Chinese J Appl Chem, 2016,33(4):452-458.  

    21. [21]

      Burckhalter J H, Leib R I. Amino-and Chloromethylation of 8-Quinolinol. Mechanism of Preponderant Ortho Substitution in Phenols Under Mannich Conditions[J]. J Org Chem, 1961,26(10):4083-4087.  

    22. [22]

      Tajimir-Riahi H A, Sarkheil A. Complexes of Dioxouranium (Ⅵ) with Zwitter-ionic Forms of Bi-and Tetra-dentate Schiff Bases[J]. Monatsh Chem, 1981,112(11):1261-1269. doi: 10.1007/BF00904679

    23. [23]

      Zhong C F, Wu Q, Guo R F. Synthesis and Luminescence Properties of Polymeric Complexes of Cu (Ⅱ), Zn (Ⅱ) and Al (Ⅲ) with Functionalized Polybenzimidazole Containing 8-Hydroxyquinoline Side Group[J]. Opt Mater, 2008,30(6):870-875. doi: 10.1016/j.optmat.2007.03.008

    24. [24]

      Liu D, Wang Z G. Novel Polyaryletherketones Bearing Pendant Carboxyl Groups and Their Rare Earth Complexes, Part I:Synthesis and Characterization[J]. Polymer, 2008,49(23):4960-4967. doi: 10.1016/j.polymer.2008.09.015

  • 加载中
    1. [1]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    6. [6]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    7. [7]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    8. [8]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    11. [11]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    17. [17]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    18. [18]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    19. [19]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    20. [20]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

Metrics
  • PDF Downloads(0)
  • Abstract views(341)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return