Citation: ZHAO Liping, CAI Xingnan, WANG Hongyu, QI Li. Molybdenum Trioxide: A New Type Negative Electrode Material for Electric Energy Storage Devices Using Na+-based Organic Electrolytes[J]. Chinese Journal of Applied Chemistry, ;2017, 34(3): 262-268. doi: 10.11944/j.issn.1000-0518.2017.03.160239 shu

Molybdenum Trioxide: A New Type Negative Electrode Material for Electric Energy Storage Devices Using Na+-based Organic Electrolytes

  • Corresponding author: QI Li, qil@ciac.ac.cn
  • Received Date: 7 June 2016
    Revised Date: 11 July 2016
    Accepted Date: 2 August 2016

    Fund Project: Supported by the National Basic Research Program of China No.2011CB935702, No.2012CB932800Talent Scientific Research Fund of LSHU No.2016XJJ-020the National Natural Science Foundation of China No.21173206

Figures(8)

  • Owing to the shortage of lithium resources, we investigated the sodium-ion storage device using MoO3 as the negative electrode materials. MoO3 was prepared through a simple method and characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscopy(TEM). MoO3 was used as the negative electrode materials for electric energy storage devices using Na+-based organic electrolytes. The charge storage mechanism at the MoO3 negative electrode was investigated by cyclic voltammetry and galvanostatic charge-discharge tests. A new type of electric energy storage devices was constructed with MoO3 as negative materials and activated carbon(or graphite) as positive materials. The electrochemical properties were studied in 1 mol/L NaPF6-propylene carbonate(PC). The MoO3/AC and MoO3/graphite devices owns the voltage ranges of 0~3.2 V and 0~3.5 V, energy densities of 31.6 Wh/kg and 53 Wh/kg, respectively. The long-cycling stabilities of both devices are superior to the AC/AC symmetric capacitor obviously. This kind of energy storage devices would be a good substitute for lithium-ion batteries.
  • 加载中
    1. [1]

      Abada S, Marlair G, Lecocq A. Safety Focused Modeling of Lithium-ion Batteries:A Review[J]. J Power Sources, 2016,305(2):178-192.  

    2. [2]

      Berecibar M, Gandiaga I, Villarreal I. Critical Review of State of Health Estimation Methods of Li-ion Batteries for Real Applications[J]. Renew Sustain Energy Rev, 2016,56(4):572-587.  

    3. [3]

      WANG Hong, ZHANG Weide. Surface-coating Modification of Li-rich Cathode Materials Li[Li0.2Mn0.4Fe0.4]O2[J]. Chinese J Appl Chem, 2013,30(6):705-709.  

    4. [4]

      TANG Anping, LIU Lihua, XU Guorong. Progress in Borate Electrode Materials for Lithium ion Batteries[J]. Chinese J Appl Chem, 2012,29(11):1221-1230.  

    5. [5]

      YU Zhongbao, ZHANG Shengli, YANG Shuting. Effects of Sintering Temperature on the Structure and Electrochemical Property of LiCoO2[J]. Chinese J Appl Chem, 2012,16(4):102-104.  

    6. [6]

      Kim S, Seo H, Ma X. Electrode Materials for Rechargeable Sodium-Ion Batteries:Potential Alternatives to Current Lithium-Ion Batteries[J]. Adv Energy Mater, 2012,2(7):710-721. doi: 10.1002/aenm.201200026

    7. [7]

      Ellis B, Nazar L. Sodium and Sodium-ion Energy Storage Batteries[J]. Curr Opin Solid Mater Sci, 2012,16(4):168-177. doi: 10.1016/j.cossms.2012.04.002

    8. [8]

      Palomares V, Serras P, Villaluenga I. Na-ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems[J]. Energy Environ Sci, 2012,5(3):5884-5901. doi: 10.1039/c2ee02781j

    9. [9]

      Ivana H, Stefano P, Jusef H. Characteristics of an Ionic Liquid Electrolyte for Sodium-ion Batteries[J]. J Power Sources, 2016,303(1):203-207.  

    10. [10]

      Yan D, PanL K. A New Sodium Storage Mechanism of TiO2 for Sodium Ion Batteries[J]. Inorg Chem Frontiers, 2016,3(4):464-468. doi: 10.1039/C5QI00226E

    11. [11]

      Zhang Y, Hou H S, Yang X M. Sodium Titanate Cuboid as Advanced Anode Material for Sodium Ion Batteries[J]. J Electrochem Soc, 2016,305(2):200-208.  

    12. [12]

      Komaba S, Mikumo T, Yabuuchi N. Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and α-Fe2O3 for Rechargeable Batteries[J]. Electrochem Comm, 2010,157(1):A60-A65. doi: 10.1149/1.3254160

    13. [13]

      Abouimrane A, Weng W, Eltayeb H. Sodium Insertion in Carboxylate Based Materials and Their Application in 3.6 V Full Sodium Cells[J]. Energy Environ Sci, 2012,5(11):9632-9638. doi: 10.1039/c2ee22864e

    14. [14]

      Zhang Z A, Zhao X X, Li J. SnSe″x Flowerlike Composites as Anode Materials for Sodium Ion Batteries[J]. Mater Lett, 2016,162(1):169-172.

    15. [15]

      West W C, Whitacre J F. Batteries, Fuel Cells, and Energy Conversion-Long Cycle Life Elevated Temperature Thin-Film Batteries Incorporating MoO3 Cathodes[J]. J Electrochem Soc, 2005,152(5):A966-A969. doi: 10.1149/1.1887147

    16. [16]

      Wiecek B, Twardoch U. Electrochemical Study of Molybdenum Oxide Film Electrodes[J]. J Phys Chem Solids, 2004,65(2):263-268.  

    17. [17]

      Spahr M E, Novak P, Hass O. Electrochemical Behaviour of Coated Lithium-Carbon Electrodes[J]. J Power Sources, 1995,54(2):346-351. doi: 10.1016/0378-7753(94)02099-O

    18. [18]

      Zhou L, Yang L C, Yuan P. α-MoO3 Nanobelts:A High Performance Cathode Material for Lithium Ion Batteries[J]. J Phys Chem C, 2010,114(49):21868-21872. doi: 10.1021/jp108778v

    19. [19]

      Hassan M F, Guo Z P, Chen Z. Carbon-coated MoO3 Nanobelts as Anode Materials for Lithium-ion Batteries[J]. J Power Sources, 2010,195(8):2372-2376. doi: 10.1016/j.jpowsour.2009.10.065

    20. [20]

      Srirama H, Kuppan S, Palani B. @a-MoO3:A High Performance Anode Material for Sodium-ion Batteries[J]. Electrochem Comm, 2013,31(8):5-9.

    21. [21]

      Zhao L P, Qi L, Wang H Y. Sodium Titanate Nanotube/Graphite, an Electric Energy Storage Device Using Na+-based Organic Electrolytes[J]. J Power Sources, 2013,242(11):597-603.  

    22. [22]

      Zhao L P, Qi L, Wang H Y. MoS2-C/Graphite, an Electric Energy Storage Device Using Na+-based Organic Electrolytes[J]. RSC Adv, 2015,5(20):15431-15437. doi: 10.1039/C4RA14868A

    23. [23]

      ZHAO Liping, QI Li, WANG Hongyu. Molybdenum Trioxide/Activated Carbon Sodium-ion Electrochemical Capacitors[J]. Chinese J Appl Chem, 2013,30(10):1189-1193.  

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    4. [4]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    10. [10]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(2)
  • Abstract views(653)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return