Citation: ZHUANG Zhibo, NAN Zhaodong. Preparation and Swelling Properties of Carbon Nanotubes Composited Sodium Polyacrylate[J]. Chinese Journal of Applied Chemistry, ;2017, 34(3): 282-290. doi: 10.11944/j.issn.1000-0518.2017.03.160237 shu

Preparation and Swelling Properties of Carbon Nanotubes Composited Sodium Polyacrylate

  • Corresponding author: NAN Zhaodong, zdnan@yzu.edu.cn
  • Received Date: 6 June 2016
    Revised Date: 4 August 2016
    Accepted Date: 14 September 2016

    Fund Project: Supported by the National Natural Science Foundation of China No.212731796, No.21673204

Figures(9)

  • Carbon nanotubes(CNTs) composited sodium polyacrylate(PAA-Na) superabsorbent polymer was prepared by solution polymerization of acrylic acid(AA), where ammonium persulfate(APS) was used as an initiator, N,N'-methylene-bisacrylamide(MBA) as a crosslinker in the presence of carbon nanotubes. Effects of the amount of CNTs, initiator, crosslinker and the reaction temperature on water absorbency were studied. The results show that the synthetic resins have the best water absorbency when the mass ratio of the crosslinker to AA is 0.04%, the initiator to AA is 0.3%, the CNTs to AA is 0.3% and the reaction temperature at 75℃. After the addition of carbon nanotubes, the CNTs/PAA-Na shows rough surface and porous structure, which may lead to changes in water absorbency. The water absorbence and the swelling rate by the CNTs/PAA-Na are significantly improved than those by PAA-Na. The highest water absorbence of CNTs/PAA-Na reaches 1423 g/g and 104 g/g in distilled water and in saline water, respectively. The CNTs/PAA-Na composite maintains 76.0% of its water absorbency after repeated five times, and the water absorbent capacity is 1081.5 g/g.
  • 加载中
    1. [1]

      Dragan E S, Lazar M M, Dinu M V. Macroporous Composite IPN Hydrogels and Chitosan with Tuned Swelling and Sorption of Cationic Dyes[J]. Chem Eng J, 2012,204(15):198-209.  

    2. [2]

      Shi X, Wang A. Development of a Superporous Hydroxyethyl Cellulose-based Hydrogel by Anionic Surfactant Micelle Templating with Fast Swelling and Superabsorbent Properties[J]. J Appl Polym Sci, 2015,132(23):42027-42034.  

    3. [3]

      XIE Yang, FU Dong, SUI Xin. Modification Methods and Application of Polyacrylic Superabsorbent[J]. Heilongjiang Sci, 2014,5(11):26-27.  

    4. [4]

      CHEN Zhenbin, MA Yingxia, ZHANG Anjie. Advanced Development of Modification of Superabsorbent Polymer Based on Sodium Polyacrylate[J]. Appl Chem Ind, 2009,38(11):1656-1661.  

    5. [5]

      WU Zhengang. Synthesis and Property of Super Absorbent Polymer[D]. Xi'an:Fourth Military Medical University,2008(in Chinese).

    6. [6]

      Qiu H X, Yu J G. Polyacrylate/(carboxymethylcellulose modified montmorillonite) Superabsorbent Nanocomposite:Preparation and Water Absorbency[J]. J Appl Polym Sci, 2008,107(1):118-123. doi: 10.1002/(ISSN)1097-4628

    7. [7]

      Mao Z, Wu W, Cheng Y. Effect of Hydrophilically Functionalized Carbon Nanotubes on the Reinforcement of Water-Borne Epoxy Resin[J]. J Nanosci Nanotechnol, 2011,11(6):5169-5178. doi: 10.1166/jnn.2011.4178

    8. [8]

      Wang Y, Zhang X, Wei H. Synthesis of Poly(AA-co-AM) Superabsorbent Composites by Reinforcement of Halloysite Nanotubes[J]. Polym Compos, 2015,36(2):229-236. doi: 10.1002/pc.v36.2

    9. [9]

      ZHANG Ziping, LIU Xiujun, LI Tongqi. Development of Dispersion of Carbon Nanotubes/Polymer Composites[J]. Mater Rev, 2011,25(5):130-135.  

    10. [10]

      Roy S, Hussain C M, Mitra S. Carbon Nanotube-immobilized Super-absorbent Membrane for Harvesting Water from the Atmosphere[J]. Environ Sci:Water Res Technol, 2015,1(6):753-760. doi: 10.1039/C5EW00098J

    11. [11]

      XU Yong, WANG Jing, HU Jinping. Purification of Multi-walled Carbon Nanotubes and Its Surface Modification[J]. Sciencepaper Online, 2010,5(6):423-426.  

    12. [12]

      Liu M, Li W, Rong J. Novel Polymer Nanocomposite Hydrogel with Natural Clay Nanotubes[J]. Colloid Polym Sci, 2012,290(10):895-905. doi: 10.1007/s00396-012-2588-z

    13. [13]

      YANG Xiaofeng, PENG Longgui, ZHENG Meiyu. Study on the Preparation and Performance of the Salt-tolerant High-absorbent Material Modified with Kaolin[J]. New Chem Mater, 2011,39(7):117-119.  

    14. [14]

      Zhang J P, Li A, Wang A Q. Study on Superabsorbent Composite. V. Synthesis, Swelling Behaviors and Application of Poly(acrylic acid-co-acrylamide)/Sodium Humate/Attapulgite Superabsorbent Composite[J]. Polym Adv Technol, 2005,16(11/12):813-820.  

    15. [15]

      Pourjavadi A, Barzegar S, Zeidabadi F. Synthesis and Properties of Biodegradable Hydrogels of κ-Carrageenan Grafted Acrylic Acid-co-2-acrylamido-2-methylpropanesulfonic Acid as Candidates for Drug Delivery Systems[J]. React Funct Polym, 2007,67(7):644-654. doi: 10.1016/j.reactfunctpolym.2007.04.007

    16. [16]

      Wu J, Wei Y, Lin J. Study on Starch-graft-acrylamide/Mineral Powder Superabsorbent Composite[J]. Polym, 2003,44(21):6513-6520. doi: 10.1016/S0032-3861(03)00728-6

    17. [17]

      Li A, Zhang J, Wang A. Utilization of Starch and Clay for the Preparation of Superabsorbent Composite[J]. Bioresour Technol, 2007,98(2):327-332. doi: 10.1016/j.biortech.2005.12.026

    18. [18]

      YU Zhi, GUO Jian, WANG Chang'an. Preparation of Diatomite/polyacrylamide Composite by Inverse Emulsion Polymerization[J]. J Shenyang Univ Chem Technol, 2011,25(2):126-130.  

    19. [19]

      LIU Pingsheng, LI Li, ZHOU Ninglin. Synthesis of Montmorillonite/Poly(acrylic acid) Super Absorbent Resin[J]. Acta Mater Compos Sin, 2006,23(3):44-48.  

    20. [20]

      LI Kun, CHEN Quanliang, ZHENG Yanping. Performance Characterization of AMPS/AA-Starch-OMMT Superabsorbent Composite[J]. Chinese J Colloid Polym, 2014,32(2):51-54.  

    21. [21]

      Zaharia A, Sarbu A, Radu A L. Preparation and Characterization of Polyacrylamide-modified Kaolinite Containing Poly[acrylic acid-co-methylene bisacrylamide] Nanocomposite Hydrogels[J]. Appl Clay Sci, 2015,103(4):46-54.  

    22. [22]

      Millan A, Palacio F, Falqui A. Maghemite Polymer Nanocomposites with Modulated Magnetic Properties[J]. Acta Mater, 2007,55(6):2201-2209. doi: 10.1016/j.actamat.2006.11.020

    23. [23]

      Irani M, Ismail H, Ahmad Z. Preparation and Properties of Linear Low-density Polyethylene-g-poly (acrylic acid)/Organo-montmorillonite Superabsorbent Hydrogel Composites[J]. Polym Test, 2013,32(3):502-512. doi: 10.1016/j.polymertesting.2013.01.001

    24. [24]

      Feng E, Ma G, Wu Y. Preparation and Properties of Organic inorganic Composite Superabsorbent Based on Xanthan Gum and Loess[J]. Carbohydr Polym, 2014,111(13):463-468.  

    25. [25]

      Bao Y, Ma J, Li N. Synthesis and Swelling Behaviors of Sodium Carboxymethyl Cellulose-g-poly(AA-co-AM-co-AMPS)/MMT Superabsorbent Hydrogel[J]. Carbohydr Polym, 2011,84(1):76-82. doi: 10.1016/j.carbpol.2010.10.061

    26. [26]

      Li Q, Ma Z, Yue Q. Synthesis, Characterization and Swelling Behavior of Superabsorbent Wheat Straw Graft Copolymers[J]. Bioresour Technol, 2012,118(3):204-209.  

    27. [27]

      ZHANG Junqi, JIN Shuping, HAN Yuqi. Preparation and Swelling Properties of Coal Fly Ash Composited Sodium Polyacrylate Hydrogel[J]. Chinese J Appl Chem, 2016,33(4):419-429.  

    28. [28]

      de Moura M R, Guilherme M R, Campese G M. Porous Alginate-Ca2+ Hydrogels Interpenetrated with PNIPAAm Networks:Interrelationship Between Compressive Stress and Pore Morphology[J]. Eur Polym J, 2005,41(12):2845-2852. doi: 10.1016/j.eurpolymj.2005.06.007

    29. [29]

      XI Guoxi, LIANG Rui, XU Huidao. Thermal Decomposition Kinetics of Sodium Polyacrylate[J]. J Henan Norm Univ:Nat Sci, 2009,37(2):102-104.  

    30. [30]

      Zhang M, Cheng Z, Zhao T. Synthesis, Characterization, and Swelling Behaviors of Salt-sensitive Maize Bran-Poly(acrylic acid) Superabsorbent Hydrogel[J]. J Agric Food Chem, 2014,62(35):8867-8874. doi: 10.1021/jf5021279

    31. [31]

      Tong X, Zhao H, Tang T. Preparation and Characterization of Poly(ethylacrylate)/Bentonite Nanocomposites by in situ Emulsion Polymerization[J]. J Polym Sci Part A:Polym Chem, 2002,40(11):1706-1711. doi: 10.1002/(ISSN)1099-0518

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    12. [12]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    13. [13]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    14. [14]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(3)
  • Abstract views(574)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return