Citation: CHI Yongmei, XU Songjie, CAO Yuting, DONG Jian. Synthesis and Properties of Novel Amphiphilic Polyamides[J]. Chinese Journal of Applied Chemistry, ;2017, 34(3): 269-275. doi: 10.11944/j.issn.1000-0518.2017.03.160214 shu

Synthesis and Properties of Novel Amphiphilic Polyamides

  • Corresponding author: DONG Jian, jiandong@usx.edu.cn
  • Received Date: 23 May 2016
    Revised Date: 20 July 2016
    Accepted Date: 19 August 2016

    Fund Project: the Natural Science Foundation of Zhejiang Province No.LY12E3001the National Undergraduate Innovative Training Project No.201310349004Supported by the National Natural Science Foundation of China No.21674063

Figures(5)

  • To provide a theoretical basis for designing natural gas hydrate inhibitors and understanding the inhibition mechanism, and to analyze the nature and characteristics of the interactions between amphiphilic polyamides and water, water soluble poly(1,3-propylene citramide) was synthesized and based upon which, a new amphiphilic polymer was prepared by the modification with cyclohexyl isocyanate. The structure and properties of the product were characterized by proton nuclear magntic resonance spectroscopy, gel permeation chromatography and differential scanning calorimetry. The results show that the modified polymer forms nonfreezable bound water(NFBW) and the amount of the NFBW is twice the level in traditional kinetic gas hydrate inhibitors such as poly(N-vinylcaprolactam) or poly(N-vinylpyrrolidone). The specific heat capacities of water in the modified polymer increases remarkably by 36%. The hydrophobic interaction force between the polymer and water is enhanced, resulting in significant hydrophobic hydration restricted in the polymer. The modified polymers show strong hydrophobicity, leading to high levels of tightly bound water molecules and providing a necessary environment for increasing amount of NFBW.
  • 加载中
    1. [1]

      Hammerschmidt E G. Formation of Gas Hydrates in Natural Gas Transmission Lines[J]. Ind Eng Chem, 1934,26(8):851-855. doi: 10.1021/ie50296a010

    2. [2]

      Kelkar S K, Selim M S, Sloan E D. Hydrate Dissociation Rates in Pipelines[J]. Fluid Phase Equilib, 1998,150/151(1):371-382.  

    3. [3]

      ZHANG Ziyi, TONG Le, PAN Yi. Prediction of Gas Hydrate in Pipeline[J]. Contemp Chem Ind, 2013,42(4):425-427.  

    4. [4]

      LIU Jun, MA Guiyang, PAN Zhen. Experiment on Formation and Decomposition of Methane Hydrate[J]. Chem Eng, 2015,43(11):35-40.  

    5. [5]

      GONG Zhiwu, ZHANG Liang, CHENG Haiqing. The Influence of Subsea Natural Gas Hydrate Dissociation on the Safety of Offshore Drilling[J]. Pet Drill Technol, 2015,43(4):19-24.  

    6. [6]

      CUI Qing. The Prevention of Natural Gas Hydrates in Pipeline[J]. Appl Energy Technol, 2014(10):27-30.  

    7. [7]

      BAI Yuhu, LI Qingping, ZHOU Jianliang. The Potential Risk of Gas Hydrate to Deepwater Drilling and Production and the Corresponding Strategy[J]. Pet Drill Tech, 2009,37(3):17-21.  

    8. [8]

      ZHAO Xin, QIU Zhengsong, JIANG Lin. An Experimental Analysis of Natural Gas Hydrate Formation at the Presence of Kinetic Hydrate Inhibitors[J]. Nat Gas Ind, 2014,34(2):105-110.  

    9. [9]

      QUAN Hongping, LI Qiang, LU Hongsheng. Study on Properties of Natural Gas Hydrate Inhibitor BVP[J]. Sci Technol Eng, 2013,13(6):1442-1445.  

    10. [10]

      FAN Shuanshi, WANG Yanhong, LANG Xuemei. Research Progress of Natural Gas Hydrate Kinetic Inhibition Technology[J]. Nat Gas Ind, 2011,31(12):1-11.  

    11. [11]

      YAN Xiaoyan, HAO Hong, WANG Kai. Progress in Compound Gas Hydrate Inhibitors[J]. Petrochem Technol, 2013,41(11):1286-1292.  

    12. [12]

      LIU Jianyi, ZHANG Jing, ZHANG Guangdong. Evaluation and Application of a New Hydrate Kinetic Inhibitor[J]. Nat Gas Ind, 2011,31(1):65-68.  

    13. [13]

      HUO Hongjun, REN Shaoran, WANG Ruihe. Experiment on Synergetic Effects of Kinetic and Thermodynamic Hydrate Inhibitors[J]. J China Univ Pet(Edn Nat Sci), 2012,36(5):110-113.  

    14. [14]

      TANG Cuiping, DU Jianwei, LIANG Deqing. Investigation on a New Natural Gas Hydrate Kinetic Inhibitor[J]. J Xi'an Jiaotong Univ, 2008,42(42):333-337.  

    15. [15]

      BAI Xiaodong, HUANG Jinjun, WANG Chuan. Evaluating Investigation of a New Hydrate Inhibitor HBH[J]. Pet Drill Technol, 2007,35(2):36-38.  

    16. [16]

      Andrea P, Musa O M, Steed J W. The Chemistry of Low Dosage Clathrate Hydrate Inhibitors[J]. Chem Soc Rev, 2013,42(5):1996-2015. doi: 10.1039/c2cs35340g

    17. [17]

      ZHAO Xin, QIU Zhengsong, HUANG Weian. Inhibition Mechanism and Optimized Design of Thermodynamic Gas Hydrate Inhibitors[J]. Acta Pet Sin, 2015,36(6):760-766.  

    18. [18]

      LEI linglin, SHI Xiaolong. Research Progress in Natural Gas Hydrate Inhibition Technology[J]. West-China Explor Eng, 2013,25(6):87-89.  

    19. [19]

      WANG Shumiao, WANG Guofu, LIU Hongbo. Application Study on Gas Hydrate Inhibitors of Gas Transmission Pipeline[J]. Oil Gas Storage Transport, 2006,25(2):43-46.  

    20. [20]

      XU Jiafang, QIU Zhengsong, HE Chang. The Inhibitor Optimization of Gas Hydrates in Deepwater Drilling Fluids[J]. Acta Pet Sin, 2011,32(1):149-152.  

    21. [21]

      Davenport J R, Musa O M, Paterson M J. A Simple Chemical Model for Clathrate Hydrate Inhibition by Polyvinylcaprolactam[J]. Chem Commun, 2011,47(35):9891-9893. doi: 10.1039/c1cc13556b

    22. [22]

      BI Man, JIA Zengqiang, WU Hongqin. Update Progress in Research and Application of Natural Gas Hydrate Inhibitor[J]. Nat Gas Ind, 2009,29(12):75-78.  

    23. [23]

      Anderson B J, Tester J W, Paolo B G. Properties of Inhibitors of Methane Hydrate Formation via Molecular Dynamics Simulations[J]. J Am Chem Soc, 2005,127(50):17852-17862. doi: 10.1021/ja0554965

    24. [24]

      Yagci Y E, Antonietti M, Borner H G. Synthesis of Poly(tartar amides) as Bio-inspired Antifreeze Additives[J]. Macromol Rapid Commun, 2006,19(27):1660-1664.  

    25. [25]

      WANG Xuezhen, BAI Zilong, MA Hongliao. Studies on Preparation and Properties of Polyglycerol Esteramide as a Gas Hydrate Kinetic Inhibitor[J]. Oilfield Chem, 2010,27(2):212-215.  

    26. [26]

      SUN Li, DONG Jian. Recent Progress in Polymers as Kinetic Hydrate Inhibitors[J]. Chinese Polym Bull, 2014(10):69-76.  

    27. [27]

      Munoz F, Kelland M, Sun L. Kinetic Hydrate Inhibitors:Structure-activity Relationship Studies on a Series of Branched Poly(ethylene citramide)s with Varying Lipophilic Groups[J]. Energy & Fuels, 2015,29(8):4774-4782.  

    28. [28]

      Varma-Nair M, Costello C A, Colle K S. Thermal Analysis of Polymer-water Interactions and Their Relation to Gas Hydrate Inhibition[J]. J Appl Polym Sci, 2007,103(4):2642-2653. doi: 10.1002/(ISSN)1097-4628

    29. [29]

      LU Hong, FENG Dachun, YANG Jiyou. Comparison of Differential Scanning Calorimetry and Modulated Differential Scanning Calorimetry in Measurement of Specific Heat Capacities[J]. Anal Instrum, 2011(3):70-74.  

  • 加载中
    1. [1]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    2. [2]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    3. [3]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    4. [4]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    5. [5]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    6. [6]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    7. [7]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    8. [8]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    9. [9]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    10. [10]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    11. [11]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    14. [14]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    15. [15]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    18. [18]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    19. [19]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    20. [20]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

Metrics
  • PDF Downloads(1)
  • Abstract views(729)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return