Citation: GUAN Xiaolin, JIA Tianming, QIN Yuxin, ZHANG Donghai, ZHANG Yang, FAN Hongting, WEI Qiangbing, LAI Shoujun. Aqueous Synthesis of Thiol-functionalized Polyvinylalcohol/CdS Quantum Dots Nanocomposite at Low Temperature for Detection of Trace Cu2+ in Water[J]. Chinese Journal of Applied Chemistry, ;2017, 34(3): 291-299. doi: 10.11944/j.issn.1000-0518.2017.03.160213 shu

Aqueous Synthesis of Thiol-functionalized Polyvinylalcohol/CdS Quantum Dots Nanocomposite at Low Temperature for Detection of Trace Cu2+ in Water

  • Corresponding author: GUAN Xiaolin, guanxiaolin@nwnu.edu.cn.com
  • Received Date: 23 May 2016
    Revised Date: 27 June 2016
    Accepted Date: 14 July 2016

    Fund Project: Specialized Research Fund for the Doctoral Program of Higher Education No.20136203120002Supported by the National Natural Science Foundation of China No.51363019, No.21504070

Figures(11)

  • A high quality PVA/CdS QDs nanocomposites modified by thiol-functionalized polyvinylalcohol (PVA) was prepared by aqueous synthetic approaches at low temperature. The samples were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TG), photoluminescence spectroscopy (PL) and ultraviolet-visible spectroscopy (UV-Vis). The results show that CdS QDs in the nanocomposites are spherical particles with a cubic crystal structure and a diameter size of about 5 nm. PVA/CdS nanocomposites have good stability, high dispersibility and excellent luminescence properties. Meanwhile, the fluorescent responses of as-prepared PVA/CdS to different metal ions were studied. Based on the fluorescence quenching behavior of PVA/CdS quantum dots, we established a method for the fluorescent detection of Cu2+. When the concentration of Cu2+ is in the range of 1~1000 nmol/L, the fluorescence intensity linearly decreases with the increase of Cu2+ concentration. The linear correlation coefficient is 0.9923 and the detection limit reaches 0.12 nmol/L. The method provides high sensitivity, simplicity of operation and low detection limit, and is successfully applied to the determination of trace copper in the Yellow River samples.
  • 加载中
    1. [1]

      Liu Y Y, Stehlik J, Eichler C. Semiconductor Double Quantum Dot Micromaser[J]. Science, 2015,347(6219):285-287. doi: 10.1126/science.aaa2501

    2. [2]

      Zrazhevskiy P, Gao X. Multifunctional Quantum Dots for Personalized Medicine[J]. Nano Today, 2009,4(5):414-428. doi: 10.1016/j.nantod.2009.07.004

    3. [3]

      Nebras A A, Eamonn K, Gabrielle K. Photoluminescence Blinking from Single CdSeS/ZnS Quantum Dots in a Conducting Polymer Matrix[J]. J Phys Chem C, 2015,119(11):6278-6287. doi: 10.1021/jp511734k

    4. [4]

      Speranskaya E S, Beloglazova N V, Lenain P. Polymer-Coated Fluorescent CdSe-Based Quantum Dots for Application in Immunoassay[J]. Biosen Bioelectron, 2014,53(4):225-231.  

    5. [5]

      Armentano I, Dottori M, Fortunati E S. Biodegradable Polymer Matrix Nanocomposites for Tissue Engineering:A Review[J]. Polym Degrad Stab, 2010,95(11):2126-2146. doi: 10.1016/j.polymdegradstab.2010.06.007

    6. [6]

      Ding B, Kim H Y, Lee S C. Preparation and Characterization of a Nanoscale Poly (vinyl alcohol) Fiber Aggregate Produced by an Electrospinning Method[J]. J Polym Sci Polym Phys, 2002,40(13):1261-1268. doi: 10.1002/(ISSN)1099-0488

    7. [7]

      Stoiljkovic A, Venkatesh R, Klimov E. Poly (styrene-co-n-butyl acrylate) Nanofibers with Excellent Stability Against Water by Electrospinning from Aqueous Colloidal Dispersions[J]. Macromolecules, 2009,42(16):6147-6151. doi: 10.1021/ma900354u

    8. [8]

      Wang H M, Fang P F, Chen Z. Synthesis and Characterization of CdS/PVA Nanocomposite Films[J]. Appl Surf Sci, 2007,253(20):8495-8499. doi: 10.1016/j.apsusc.2007.04.020

    9. [9]

      Damian C O, Tjaart P J, Krüger O S. Oluwatobi. Nanosecond Laser Irradiation Synthesis of CdS Nanoparticles in a PVA System[J]. Appl Surf Sci, 2014,290(3):18-26.  

    10. [10]

      Dorokhin D, Tomczak N, Han M. Reversible Phase Transfer of (CdSe/ZnS) Quantum Dots between Organic and Aqueous Solutions[J]. ACS Nano, 2009,3(3):661-667. doi: 10.1021/nn8006515

    11. [11]

      Aldana J, Lavelle N, Wang Y J. Size-Dependent Dissociation pH of Thiolate Ligands from Cadmium Chalcogenide Nanocrystals[J]. J Am Chem Soc, 2005,127(8):2496-2504. doi: 10.1021/ja047000+

    12. [12]

      Mansur H S, Mansur A A P. CdSe Quantum Dots Stabilized by Carboxylic-functionalized PVA:Synthesis and UV-vis Spectroscopy Characterization[J]. Mater Chem Phys, 2011,125(3):709-717. doi: 10.1016/j.matchemphys.2010.09.068

    13. [13]

      Mansur H S, Mansur A A P, González J C. Synthesis and Characterization of CdS Quantum Dots with Carboxylicfunctionalized Poly (vinyl alcohol) for Bioconjugation[J]. Polymer, 2011,52(4):1045-1054. doi: 10.1016/j.polymer.2011.01.004

    14. [14]

      HUANG Sisi, ZHANG Xu, QIAN Shahua. Preconcentration of Trace Cu (Ⅱ) in Water Samples with Nano-Sized ZnO and Determination by GFAAS[J]. Spectrosc Spectr Anal, 2015,35(9):2420-2423.  

    15. [15]

      ZHUANG Jianmei, ZHANG Li, ZHANG Chunrong. Technol. Determination of Trace Copper by Anodic Stripping Voltammetry at Nano-TiO2/Nafion Modified Gold Electrode[J]. Environ Sci, 2012,35(7):138-141.

    16. [16]

      Oleszczuk N, Castro J T, Silva M M. Method Development for The Determination of Manganese, Cobalt and Copper in Green Coffee Comparing Direct Solid Sampling Electrothermal Atomic Absorption Spectrometry and Inductively Coupled Plasma Optical Emission Spectrometry[J]. Talanta, 2007,73(5):862-869. doi: 10.1016/j.talanta.2007.05.005

    17. [17]

      HE Qiangfang, WU Yinghong, CAI Zhijian. Synthesis of Fluorescent Cross-linked Stabilized Polymeric Micelles Based on Salicylidene Schiff Base/Zn2+ Complexes and Sensor for Cu2+ Detection[J]. Chinese J Appl Chem, 2016,33(6):701-709.  

    18. [18]

      Chen Y F, Rosenzweig Z. Luminescent CdS Quantum Dots as Selective Ion Probes[J]. Anal Chem, 2002,74(19):5132-5138. doi: 10.1021/ac0258251

    19. [19]

      Sunga T W, Lo Y L. Highly Sensitive and Selective Sensor Based on Silica-coated CdSe/ZnS Nanoparticles for Cu2+ Ion Detection[J]. Sensor Actuators B, 2012,165(1):119-125. doi: 10.1016/j.snb.2012.02.028

    20. [20]

      Shi F. D, Zhou J, Zhang L. Cu2+ Ion Responsive Solvent-Free Quantum Dots[J]. Small, 2014,10(19):3901-3906. doi: 10.1002/smll.201400567

    21. [21]

      Zhang K, Guo J K, Nie J J. Ultrasensitive and Selective Detection of Cu2+ in Aqueous Solution with Fluorescence Enhanced CdSe Quantum Dots[J]. Sensor Actuators B, 2014,190(1):279-287.  

    22. [22]

      Riccardi R, Auriemma F, Rosa C D. X-ray Diffraction Analysis of Poly (vinyl alcohol) Hydrogels, Obtained by Freezing and Thawing Techniques[J]. Macromolecules, 2004,37(5):1921-1927. doi: 10.1021/ma035663q

    23. [23]

      Zhang W M, Sun Z X, Hao W. Synthesis of Size Tuneable Cadmium Sulphide Nanoparticles from a Single Source Precursor Using Ammonia as the Solvent[J]. Mater Res Bull, 2011,46(12):2266-2270. doi: 10.1016/j.materresbull.2011.08.062

    24. [24]

      Suo B T, Su X, Wu Ji. Poly (vinyl alcohol) Thin Film Filled with CdSe-ZnS Quantum Dots:Fabrication, Characterization and Optical Properties[J]. Mater Chem Phys, 2010,119(1/2):237-242.  

    25. [25]

      Yuan J, Guo W, Wang E. Investigation of Some Critical Parameters of Buffer Conditions for the Development of Quantum Dots-Based Optical Sensors[J]. Anal Chim Acta, 2008,630(2):174-180. doi: 10.1016/j.aca.2008.10.003

    26. [26]

      Dong C Q, Qian H F, Fang N H. Study of Fluorescence Quenching and Dialysis Process of CdTe Quantum Dots, Using Ensemble Techniques and Fluorescence Correlation Spectroscopy[J]. J Phys Chem B, 2006,10(23):11069-11075.  

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    6. [6]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    7. [7]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    8. [8]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    18. [18]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

Metrics
  • PDF Downloads(3)
  • Abstract views(848)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return