Citation: ZHU Deqin, ZHENG Shouyang, SHENG Yu. Flame-retardant Synergistic Effect of Synergists on Intumescent Flame-retardant Wood Flour-Polypropylene Composites[J]. Chinese Journal of Applied Chemistry, ;2017, 34(2): 195-203. doi: 10.11944/j.issn.1000-0518.2017.02.160189 shu

Flame-retardant Synergistic Effect of Synergists on Intumescent Flame-retardant Wood Flour-Polypropylene Composites

  • Corresponding author: SHENG Yu, dr.shengyu@163.com
  • Received Date: 6 May 2016
    Revised Date: 15 June 2016
    Accepted Date: 13 June 2016

    Fund Project: Major Science and Technology Project in Industry-University Cooperation of Fujian Provincial Department of Science and Technology of China 2012Y4002Project of the Natural Science Foundation of Fujian Province of China 2010J01276the Project in Industry-University Cooperation of Fujian Provincial Department of Science and Technology of China 2015Y4003

Figures(6)

  • Improving flame retardant properties of wood plastic composite material (WPC) has become one of the research hotspots of WPC in recent years. In this paper, the flame-retardant synergistic effects of eight kinds of synergists on intumescent flame retardants (IFRs, m(polyphosphate, APP):m(pentaerythritol, PER)=2:1) were studied by two rounds of orthogonal experiments. The synergist group MgO/EG (expandable graphite)/SiO2 with a significant synergistic flame retardant effect on the IFRs was obtained. The composition of MgO/EG/SiO2 is m(MgO):m(EG):m(SiO2)=1:5:5, optimum proportion of m(IFRs):m(MgO/EG/SiO2) is 1:0.18. The influence of IFRs and MgO/EG/SiO2 on thermal stability and flame-retardant properties of polypropylene based wood-plastics composite (WPC) was evaluated by thermogravimetric analysis (TGA) and cone calorimetry analysis (CONE). The results show that adding IFRs and MgO/EG/SiO2 to WPC can improve its thermal stability effectively, and the char residue of WPC/IFRs/MgO/EG/SiO2 at 600℃ reaches to 22.42%. The peak heat release rate (PHRR), the total heat release (THR) and total smoke production release (TSP) of WPC/IFRs reduce by 19.0%, 8.7% and 22.1%, respectively, compared with WPC. MgO/EG/SiO2 can further improve the flame retardant efficiency of IFRs, and the PHRR and THR of WPC/IFRs/MgO/EG/SiO2 drop by 33.0% and 13.8%, respectively, compared with WPC.
  • 加载中
    1. [1]

      Jeencham R, Suppakarn N, Jarukumjorn K. Effect of Flame Retardants on Flame Retardant, Mechanical, and Thermal Properties of Sisal Fiber/Polypropylene Composites[J]. Compos Part B, 2014,56(1):249-253.  

    2. [2]

      Bras M L, Duquesne S, Fois M. Intumescent Polypropylene/Flax Blends:A Preliminary Study[J]. Polym Degrad Stab, 2005,88(1):80-84. doi: 10.1016/j.polymdegradstab.2004.04.028

    3. [3]

      Zhou L, Guo C G, Li L P. Influence of Ammonium Polyphosphate Modified with 3-(Methylacryloxyl) Propyltrimethoxy Silane on Mechanical and Thermal Properties of Wood Flour-Polypropylene Composites[J]. J Appl Polym Sci, 2011,122(2):849-855. doi: 10.1002/app.v122.2

    4. [4]

      Laoutid F, Bonnaud L, Alexandre M. New Prospects in Flame Retardant Polymer Materials:From Fundamentals to Nanocomposites[J]. Mater Sci Eng, 2009,63(3):100-125. doi: 10.1016/j.mser.2008.09.002

    5. [5]

      Wu Z P, Hu Y C, Shu W Y. Effect of Ultrafine Zinc Borate on the Smoke Suppression and Toxicity Reduction of a Low-density Polyethylene/Intumescent Flame-retardant System[J]. J Appl Polym Sci, 2010,117(1):443-449.  

    6. [6]

      Nie S B, Song L, Bao C L. Synergistic Effects of Ferric Pyrophosphate (FePP) in Intumescent Flame-retardant Polypropylene[J]. Polym Adv Technol, 2011,22(6):870-876. doi: 10.1002/pat.v22.6

    7. [7]

      DU Jianxin, HAO Jianwei, WANG Jianqi. An Investigation of Synergism Between SiO2, Al2O3 and PP/APP/PER IFR System[J]. Polym Mater Sci Eng, 2004,20(1):165-167.  

    8. [8]

      Zhu H F, Zhu Q L, Li J. Synergistic Effect Between Expandable Graphite and Ammonium Polyphosphate on Flame Retarded Polylactide[J]. Polym Degrad Stab, 2011,96(2):183-189. doi: 10.1016/j.polymdegradstab.2010.11.017

    9. [9]

      Gao S L, Li B, Bai P. Effect of Polysiloxane and Silane-modified SiO2 on a Novel Intumescent Flame Retardant Polypropylene System[J]. Polym Adv Technol, 2011,22(12):2609-2616. doi: 10.1002/pat.v22.12

    10. [10]

      Ye L, Zhang Y J, Wang S H. Synergistic Effects and Mechanism of ZnCl2 on Intumescent Flame-retardant Polypropylene[J]. J Therm Anal Calorim, 2014,115(2):1065-1071. doi: 10.1007/s10973-013-3381-z

    11. [11]

      Ma Z L, Fan C R, Lyu G Y. Synergy of Magnesium and Calcium Oxides in Intumescent Flame-retarded Polypropylene[J]. J Appl Polym Sci, 2012,125(5):3567-3574. doi: 10.1002/app.v125.5

    12. [12]

      Lin M, Li B, Li Q F. Synergistic Effect of Metal Oxides on the Flame Retardancy and Thermal Degradation of Novel Intumescent Flame-retardant Thermoplastic Polyurethanes[J]. J Appl Polym Sci, 2011,121(4):1951-1960. doi: 10.1002/app.v121.4

    13. [13]

      Ren Q, Zhang Y, Li J. Synergistic Effect of Vermiculite on the Intumescent Flame Retardance of Polypropylene[J]. J Appl Polym Sci, 2011,120(2):1225-1233. doi: 10.1002/app.v120.2

    14. [14]

      Chen X Y, Sun T, Cai X F. The Investigation of Intumescent Flame-retarded ABS Using Zinc Borate as Synergist[J]. J Therm Anal Calorim, 2014,115(1):185-191. doi: 10.1007/s10973-013-3302-1

    15. [15]

      Zhou R M, Lai X J, Li H Q. Enhancement of Wollastonite on Flame Retardancy and Mechanical Properties of PP/IFR Composite[J]. Polym Compos, 2014,35(1):158-166. doi: 10.1002/pc.v35.1

    16. [16]

      NIE Qin, ZHANG Jiahuan, CHEN Si. Effect of Modified Sepiolite and Metal Oxides on the Combustion of Intumescent Flame Retardant PP[J]. China Plast Ind, 2012,40(3):108-111.  

    17. [17]

      WU Na, YANG Rongjie, HAO Jianwei. Synergistic Effect of Metal Oxides on Intumescent Flame-Retardant PP Systems[J]. Acta Polym Sin, 2009(12):1205-1210.  

    18. [18]

      LI Linjie. Study on Smoke Movement in Vertical Shaft of High-rise Building and Flame Behavior in the Fire Compartment[D]. Hefei:University of Science and Technology of China, 2014(in Chinese).

    19. [19]

      Li B, He J M. Investigation of Mechanical Property, Flame Retardancy and Thermal Degradation of LLDPE-wood-fibre Composites[J]. Polym Degrad Stab, 2004,83(2):241-246. doi: 10.1016/S0141-3910(03)00268-4

  • 加载中
    1. [1]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    5. [5]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    9. [9]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(0)
  • Abstract views(296)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return