Citation: WANG Bin, WANG Xiaohong, Li Jiuming, WANG Xiaohui, XIE Lijuan, Duan Limei, LIU Zongrui. Electrochromic Properties of Hybrid Mutilayer Film Based on Pressler Type Polyoxometalate P5W30, Positive Polyelectrolyte and Graphene Oxide[J]. Chinese Journal of Applied Chemistry, ;2017, 34(2): 233-241. doi: 10.11944/j.issn.1000-0518.2017.02.160125 shu

Electrochromic Properties of Hybrid Mutilayer Film Based on Pressler Type Polyoxometalate P5W30, Positive Polyelectrolyte and Graphene Oxide

  • Corresponding author: WANG Bin, jluwangbin09@163.com
  • Received Date: 25 March 2016
    Revised Date: 20 May 2016
    Accepted Date: 17 June 2016

    Fund Project: Natural Science Foundation of Inner Mongolia 2015BS0207Science Foundation of Inner Mongolia University for the Nationalities NMDGP1501Open Projects Founded by Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis MDK2016010Ph.D Initiative Science Foundation of Inner Mongolia University for the Nation-alities BS338the National Natural Science Foundation of China 21501102

Figures(8)

  • To improve the electrochromic performance of thin film[PEI/P5W30]30(PEI:polyethyleneimine), graphene oxide with large two-dimensional size and excellent electrical conductivity was incorporated. We have fabricated an organic/inorganic hybrid thin film[PEI/P5W30/PEI/GO]30 based on Preyssler-type polyoxometalate K12.5Na1.5[NaP5W30O110]·15H2O (P5W30) and graphene oxide (GO) by layer-by-layer method (LBL). The composition and growth process of the film were characterized by ultraviolet-visible (UV-Vis) spectrophotometer. We investigated the morphology by atomic force microscopy (AFM) and studied the electrochemical properties by cyclic voltammetry of the multilayers. The film displays reversible electrochromic behavior from colorless to blue when applied a redox potential, and the response time of the coloring and discoloring process are all within 10 seconds. More importantly, the electrochromic property has no obvious change after 150 cycles under double potential step at 0.75 V and -0.75 V, the electrocromic film reflects a good reversibility. The film of[PEI/P5W30/PEI/GO]30 exhibits fast response, long durability after GO embedding, and has a potential application in electrochromic devices.
  • 加载中
    1. [1]

      Beaujuge P M, Reynolds J R. Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices[J]. Chem Rev, 2010,110(1):268-320. doi: 10.1021/cr900129a

    2. [2]

      Runnerstrom E L, Liordes A, Lounis S D. Nanostructured Electrochromic Smart Windows:Traditional Materials and NIR-Selective Plasmonic Nanocrystals[J]. Chem Commun, 2014,50(73):10555-10572. doi: 10.1039/C4CC03109A

    3. [3]

      Sun J L, Wu Y L, Wang Y P. An Electrochromic Tristable Molecular Switch[J]. J Am Chem Soc, 2015,137(42):13484-13487. doi: 10.1021/jacs.5b09274

    4. [4]

      Trischler U, Beck F, Schlaad H. ElectrochromicProperties of Self-organized Multifunctional V2O5-Polymer Hybrid Films[J]. J Mater Chem C, 2015,3(5):950-954. doi: 10.1039/C4TC02138J

    5. [5]

      Wen R T, Nijlasson G A, Granqvist C G. Sustainable Rejuvenation of Electrochromic WO3 Films[J]. ACS Appl Mater Interfaces, 2015,7(51):28100-28104. doi: 10.1021/acsami.5b09035

    6. [6]

      Kim J, Ong G K, Wang Y. Nanocomposite Architecture for Rapid, Spectrally-Selective Electrochromic Modulation of Solar Transmittance[J]. Nano Lett, 2015,15(8):5574-5579. doi: 10.1021/acs.nanolett.5b02197

    7. [7]

      Dolbecq A, Dumas E, Mayer C R. Hybrid Organic-Inorganic Polyoxometalate Compounds:From Structural Diversity to Applications[J]. Chem Rev, 2010,110(10):6009-6048. doi: 10.1021/cr1000578

    8. [8]

      Song Y F, Tsunashima R. Recent Advances on Polyoxometalate-Based Molecular and Composite Materials[J]. Chem Soc Rev, 2012,41(22):7384-7402. doi: 10.1039/c2cs35143a

    9. [9]

      Yamase T. Photo-and Electrochromism of Polyoxometalates and Related Materials[J]. Chem Rev, 1998,98(1):307-326. doi: 10.1021/cr9604043

    10. [10]

      Tell B, Wagner S. Electrochemichromic Cells Based on Phospho-Tungstic Acid[J]. Appl Phys Lett, 1978,33(9):837-838. doi: 10.1063/1.90548

    11. [11]

      Yamase T, Matsuzawa M, Sasaki Y. Effect of W-OH Group on Electrochromism of Polyoxotungstate Film[J]. Inorg Chim Acta, 1987,127(1):9-12. doi: 10.1016/S0020-1693(00)88357-7

    12. [12]

      Yamase T, Sasaki Y, Motowaki T. Electrochromic Film Derived from Cathodic Deposition of Polyoxometalates[J]. Inorg Chim Acta, 1986,121(1):19-22. doi: 10.1016/S0020-1693(00)87733-6

    13. [13]

      Moriguchi I, Fendler J H. Characterization and Electrochromic Properties of Ultrathin Films Self-Assembled from Poly-(diallyldimethylammonium) Chloride and Sodium Decatungstate[J]. Chem Mater, 1998,10(8):2205-2211. doi: 10.1021/cm980127b

    14. [14]

      Wang B, Yin Z D, Bi L H. An Electroswitchable Fluorescence Thin-Film Based on a Luminescent Polyoxometalate Cluster[J]. Chem Commun, 2010,46(38):7163-7165. doi: 10.1039/c0cc01651a

    15. [15]

      Wang B, Bi L H, Wu L X. Electroswitchable Fluorescent Thin Film Controlled by Polyoxometalate[J]. J Mater Chem, 2011,21(10):69-71.  

    16. [16]

      Zhai Y L, Zhu Z J, Zhu C Z. Reversible Photo-Chem-Electrotriggered Three-State Luminescence Switching Based on Core Shell Nanostructures[J]. Nanoscale, 2013,5(10):4344-4350. doi: 10.1039/c3nr00254c

    17. [17]

      Gu H X, Bi L H, Fu Y. Multistate Electrically Controlled Photoluminescence Switching[J]. Chem Sci, 2013,4(12):4371-4377. doi: 10.1039/c3sc51778k

    18. [18]

      Liu J W, Zheng J, Wang J L. Ultrathin W18O49 Nanowire Assemblies for Electrochromic Devices[J]. Nano Lett, 2013,13(8):3589-3593. doi: 10.1021/nl401304n

    19. [19]

      Liu L, Wang S L, Li C. Pure Inorganic Multi-Color Electrochromic Thin Films:Vanadium-Substituted Dawson Type Polyoxometalate Based Electrochromic Thin Films With Tunable Colors From Transparent to Blue and Purple[J]. J Mater Chem C, 2015,3(20):5175-5182. doi: 10.1039/C4TC02947J

    20. [20]

      Gao G G, Xu L, Wang W J. Electrochromic Ultra-Thin Films Based on Cerium Polyoxometalate[J]. J Mater Chem, 2004,14(13)20242029.  

    21. [21]

      Sun Z X, Xu L, Guo W H. Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates[J]. J Phys Chem C, 2010,114(11):5211-5216. doi: 10.1021/jp910665b

    22. [22]

      Liu S Q, Kurth D G, Möhwald H. A Thin-Film Electrochromic Device Based on a Polyoxometalate Cluster[J]. Adv Mater, 2002,14(3):225-228. doi: 10.1002/(ISSN)1521-4095

    23. [23]

      Liu S Q, Kurth D G, Möhwald H, Volkmer D. Polyoxometalate-Based Electro-and Photochromic Dual-Mode Devices[J]. Langmuir, 2006,22(5):1949-1951. doi: 10.1021/la0523863

    24. [24]

      Zhang T R, Liu S Q, Kurth D G. Organized Nanostructured Complexes of Polyoxometalates and Surfactants that Exhibit Photoluminescence and Electrochromism[J]. Adv Funct Mater, 2009,19(4):642-652. doi: 10.1002/adfm.v19:4

    25. [25]

      Wang S M, Liu L, Chen W L. A New Electrodeposition Approach for Preparing Polyoxometalates-Based Electrochromic Smart Windows[J]. J Mater Chem A, 2013,1(2):216-220. doi: 10.1039/C2TA00486K

    26. [26]

      Liu S B, Zeng T H, Hofmann M. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide:Membrane and Oxidative Stress[J]. ACS Nano, 2011,5(9):6971-6980. doi: 10.1021/nn202451x

    27. [27]

      Pumera M. Graphene-Based Nanomaterials and Their Electro-Chemistry[J]. Chem Soc Rev, 2010,39(11):4146-4157. doi: 10.1039/c002690p

    28. [28]

      Su C L, Tandiana R, Balapanuru J. Tandem Catalysis of Amines Using Porous Graphene Oxide[J]. J Am Chem Soc, 2015,137(2):685-690. doi: 10.1021/ja512470t

    29. [29]

      Vizintin A, Lozisek M, Chellappan R K. Fluorinated Reduced Graphene Oxide as an Interlayer in Li-S Batteries[J]. Chem Mater, 2015,27(20):7070-7081. doi: 10.1021/acs.chemmater.5b02906

    30. [30]

      Ji Y C, Huang L J, Hu J. Polyoxometalate-Functionalized Nanocarbon Materials for Energy Conversion, Energy Storage and Sensor Systems[J]. Energy Environ Sci, 2015,8(5):776-789.  

    31. [31]

      Li H L, Pang S P, Wu S. Layer-by-Layer Assembly and UV Photoreduction of Graphene Polyoxometalate Composite Films for Electronics[J]. J Am Chem Soc, 2011,133(24):9423-9429. doi: 10.1021/ja201594k

    32. [32]

      Liu R J, Li S W, Yu X L. Facile Synthesis of Au-Nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids:An Enzyme-Free Electrochemical Biosensor for Hydrogen Peroxide[J]. Small, 2012,8(9):1398-1406. doi: 10.1002/smll.v8.9

    33. [33]

      Wang B, Ma Y Y, Wang S. Preparation of Hybrid Films Containing Polyoxometalate and Fluorescein and Their Electrochemically Induced Fluorescence Switching Behaviors[J]. J Mater Chem C, 2014,2(48):4423-4427.

    34. [34]

      Creaser I, Heckel M C, Jeffrey R. Rigid Nonlabile Polyoxometalate Cryptates[ZP5W30O110](15-n)- that Exhibit Unprecedented Selectivity for Certain Lanthanide and Other Multivalent Cations[J]. Inorg Chem, 1993,32(9):1573-1578. doi: 10.1021/ic00061a010

    35. [35]

      Hummer W S, Offeman F E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958,80(6):1339-1339. doi: 10.1021/ja01539a017

    36. [36]

      Zhao J P, Pei S F, Ren W C. Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films[J]. ACS Nano, 2010,4(9):5245-5252. doi: 10.1021/nn1015506

    37. [37]

      Liu S P, Xu L, Li F Y. Enhanced Electrochromic Performance of Composite Films by Combination of Polyoxometalate with Poly (3, 4-ethylenedioxythiophene)[J]. J Mater Chem, 2011,21(6):1946-1952. doi: 10.1039/C0JM02412K

    38. [38]

      Keita B, Lu Y W, Nadjo L. Salient Electruchemical and Electrocatalytic Behaviour of the Crown Heteropolyanion K28Li5H7-P8W48O184·92H2O[J]. Electrochem Commun, 2000,2(10):720-726. doi: 10.1016/S1388-2481(00)00104-1

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(1)
  • Abstract views(444)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return