Citation: DING Zhan, ZOU Peng, LI Peilong. Analysis of Physical and Chemical Behavior of Crumb Rubber in Asphalt[J]. Chinese Journal of Applied Chemistry, ;2017, 34(2): 204-210. doi: 10.11944/j.issn.1000-0518.2017.02.160117 shu

Analysis of Physical and Chemical Behavior of Crumb Rubber in Asphalt

  • Corresponding author: DING Zhan, dingzhan@chd.edu.cn
  • Received Date: 17 March 2016
    Revised Date: 22 April 2016
    Accepted Date: 30 May 2016

    Fund Project: the National Natural Science Foundation of China 51108037the Special Fund for Basic Scientific Research of Central Colleges CHD2012JC029

Figures(2)

  • Preparation of crumb rubber modified asphalt (CRMA) is an effective way to recycle waste rubber and to reduce environmental pollution. To study the physical and chemical behavior of crumb rubber in asphalt, dibutylphthalate (DBP) is used to simulate the light components of asphalt. The reaction time is 1.5 h at 175℃ after crumb rubber is stirred into the DBP. The light components are separated from crumb rubber. The physical and chemical effects of crumb rubber in the light components are investigated by gas chromatography-mass spectrometry (GC-MS) analysis of the separated light component. To study functional group changes and thermodynamic properties of rubber modified asphalt, CRMAs were respectively prepared under conditions of different temperature and treating time. Infrared spectra (IR) and differential scanning calorimetry (DSC) tests were then conducted on asphalt samples after removing crumb rubber by sieving method. The results indicate that 19 kinds of substances are detected in separated light components. In addition to the highest contents of DBP, the others are speculated to be all the materials from crumb rubber or the products from the complex physical and chemical reactions between crumb rubber and the light components. The absorption peaks of typical functional groups -CH2 and C=C increase significantly, which fully proves that the molecular chains of rubber rupture and release small molecule materials dissolved into asphalt playing a role of asphalt modification. The strong endothermic peaks of DSC curve appear for asphalt samples prepared at 195℃, 1.5 h and 175℃, 3.0 h. Therefore, the processing conditions such as high temperature and long time may lead to excessive degradation or aggregation of crumb rubber as well as asphalt aging, which change the physical and chemical properties and performances of CRMA. The production conditions of CRMA are recommended that the dosage of crumb rubber is 20% approximately, at a temperature less than 195℃ and the treating time less than 1.5 h.
  • 加载中
    1. [1]

      SUN Yuhai, GAI Guosheng, ZHNAG Peixin. Present Situation and Development Trend of Waste Rubber Recycling in China[J]. J Rubber Ind, 2003,50(12):760-763.  

    2. [2]

      Francisco J L, María C M, Francisco H O. Microscopic Analysis of the Interaction Between Crumb Rubber and Bitumen in Asphalt Mixtures Using the Dry Process[J]. Constr Build Mater, 2013,48:691-699. doi: 10.1016/j.conbuildmat.2013.07.041

    3. [3]

      Frantzis P. Crumb Rubber-Bitumen Interaction:Cold-Stage Optical Micros-copy[J]. J Mater Civil Eng, ASCE, 2003,15(5):419-426. doi: 10.1061/(ASCE)0899-1561(2003)15:5(419)

    4. [4]

      Baha V K, Mehmet Y, Alaaddin G E K. Evaluation of the Low Temperature and Elastic Properties of Crumb Rubber and SBS Modified Bitumen and Mixtures[J]. J Mater Civil Eng, 2013,25(2):257-265. doi: 10.1061/(ASCE)MT.1943-5533.0000590

    5. [5]

      DING Zhan, LI Peilong. Research on Influence Factors and Prediction Model of Viscosity of Crumb Rubber Modified Asphalt[J]. Highway, 2012(7):213-216.  

    6. [6]

      GUO Qi, SONG Lifang, LIANG Xiaozhong. Influence of Waste Powder Amount to Performance of Different Grade of Asphalt[J]. Highway, 2014(4):194-197.  

    7. [7]

      DING Zhan, LI Peilong. Research on Viscosity Crumb Rubber Modified Influence Factors and Micro Characteristics of Asphalt[J]. New Build Mater, 2011(7):66-68, 72.  

    8. [8]

      Abdelrahman M A, Carpenter S H. Mechanism of Interaction of Asphalt Cement with Crumb Rubber Modifier[J]. Transport Res Rec, 1999(1661):106-113.  

    9. [9]

      Shen J, Amirkhanian S, Lee S J. The Effects of Rejuvenating Agents on Recycled Aged CRM Binders[J]. Int J Pavement Eng, 2005,6(4):273-279. doi: 10.1080/10298430500439319

    10. [10]

      Frantzis P. Crumb Rubber-Bitumen Interactions:Diffusion of Bitumen into Rubber[J]. J Mater Civil Eng, 2004,16(9):387-394.  

    11. [11]

      CUI Ya'nan, XING Yongming, WANG Lan. Improvement Mechanism of Crumb Rubber-modified Asphalt[J]. J Build Mater, 2014,14(5):634-638.  

    12. [12]

      Artamendi I, Khalid H. Diffusion Kinetics of Bitumen into Waste Tyre Rubber[J]. AAPT J, 2006,20(3):22-33.  

    13. [13]

      LI Tinggang, LI Jinzhong, LI Wei. Micro-mechanism Study and Road Engineering Application of Rubber Asphalt[J]. J Highway Transport Res Dev, 2011,28(1):25-30.  

    14. [14]

      WANG Xiaofeng, CAO Rongji. Rubber Asphalt Modification Mechanism[J]. J Chang'an Univ (Nat Sci Ed), 2011,31(2):6-11.  

    15. [15]

      SHI Xueqin, LIU Yong, WANG Duxing. Study of Rubber Modified Asphalt and Its Properties[J]. Sci Technol Eng, 2013,13(17):5050-5053.  

  • 加载中
    1. [1]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    5. [5]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    6. [6]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    11. [11]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    14. [14]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    17. [17]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    18. [18]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    19. [19]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    20. [20]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

Metrics
  • PDF Downloads(1)
  • Abstract views(462)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return