Citation: WU Qiang, KANG Chuanqing, GAO Lianxun. Advances in Olefin Isomerization Reactions Catalyzed by the First-row Transition Metals[J]. Chinese Journal of Applied Chemistry, ;2017, 34(1): 25-39. doi: 10.11944/j.issn.1000-0518.2017.01.160258 shu

Advances in Olefin Isomerization Reactions Catalyzed by the First-row Transition Metals

  • Corresponding author: KANG Chuanqing, kangcq@ciac.ac.cn
  • Received Date: 21 June 2016
    Revised Date: 4 August 2016
    Accepted Date: 29 August 2016

    Fund Project: Supported by Jilin Technology R&D Program No. 20140203003GX

Figures(26)

  • Transition-metal-catalyzed olefin isomerization has played a crucial role in the synthesis of organic compounds, commodity chemicals, natural products, and petroleum feedstocks. Although noble metals such as Ru, Rh and Ir as catalysts for the conversions have made dramatic achievements, the disadvantages of the rare resource, high cost, and poisoning products have limited its wide application in the synthesis. Due to the abundant supply, low cost and easy removal from the final products, the first-row transition metals have attracted much attention from the chemists and have proven to be very promising with respect to the development of more sustainable catalytic system in olefin isomerizaton. This review summaried the advances in olefin isomerization catalyzed by iron, cobalt, nickel in the past years and illustrates the differences among different catalytic systems in catalytic activity, regio- and stereo-selectivity, and substrate scope. Recent developments in the olefin isomerization catalyzed by the first-row metals have proven to be very promising and effective. The reaction mechanism was discussed to have deep insight into the isomerization. The mechanism of olefin isomerization was illustrated clearly in the reported articles through intermolecular or intramolecular hydrogen shift, and the stereoselectivity and regioselectivity in different catalytic system was still worthy of further investigations. Further studies in the field to solve the challenges in high catalytic activity, stereoselectivity, and wide substrate scopes would bring the isomerization into better prospect.
  • 加载中
    1. [1]

      Sakthivel A, Mahato N R, Baskaran T. Molybdenum Carbonyl Grafted onto Silicate Intercalated Cobalt Aluminum Hydrotalcite:A New Potential Catalyst for the Hydroformylation of Octene[J]. Catal Commun, 2015,65:55-61. doi: 10.1016/j.catcom.2015.02.024

    2. [2]

      Zhang L, Zuo Z, Leng X. A Cobalt-catalyzed Alkene Hydroboration with Pinacolborane[J]. Angew Chem Int Ed, 2014,53(10):2696-2700. doi: 10.1002/anie.201310096

    3. [3]

      Palmer W N, Diao T, Pappas I. High-activity Cobalt Catalysts for Alkene Hydroboration with Electronically Responsive Terpyridine and α-Diimine Ligands[J]. ACS Catal, 2014,5(2):622-626.  

    4. [4]

      Ruddy A J, Sydora O L, Small B L. (N-Phosphinoamidinate) Cobalt-catalyzed Hydroboration:Alkene Isomerization Affords Terminal Selectivity[J]. Chem Eur J, 2014,20(43):13918-13922. doi: 10.1002/chem.v20.43

    5. [5]

      Xue M, Li J, Peng J. Effect of Triarylphosphane Ligands on the Rhodium-catalyzed Hydrosilylation of Alkene[J]. Appl Organomet Chem, 2014,28(2):120-126. doi: 10.1002/aoc.3092

    6. [6]

      Komine N, Abe M, Suda R. Markovnikov-selective Hydrosilylation of Electron-deficient Alkenes with Arylsilanes Catalyzed by Mono(phosphine)palladium(0)[J]. Organometallics, 2015,34(2):432-437. doi: 10.1021/om500964g

    7. [7]

      Schmidt A, Nodling A R, Hilt G. An Alternative Mechanism for the Cobalt-catalyzed Isomerization of Terminal Alkenes to (Z)-2-Alkenes[J]. Angew Chem Int Ed, 2015,54(3):801-804. doi: 10.1002/anie.201409902

    8. [8]

      Lee W C, Wang C H, Lin Y H. Tandem Isomerization and C-H Activation:Regioselective Hydroheteroarylation of Allylarenes[J]. Org Lett, 2013,15(20):5358-5361. doi: 10.1021/ol402644y

    9. [9]

      Donohoe T J, O'Riordan T J, Rosa C P. Ruthenium-catalyzed Isomerization of Terminal Olefins:Applications to Synthesis[J]. Angew Chem Int Ed, 2009,48(6):1014-1017. doi: 10.1002/anie.v48:6

    10. [10]

      Seayad A, Ahmed M, Klein H. Internal Olefins to Linear Amines[J]. Science, 2002,297(5587):1676-1678. doi: 10.1126/science.1074801

    11. [11]

      Huang Y H, Dass R I, Xing Z L. Double Perovskites as Anode Materials for Solid-oxide Fuel Cells[J]. Science, 2006,312(5771):254-257. doi: 10.1126/science.1125877

    12. [12]

      Biswas S, Huang Z, Choliy Y. Olefin Isomerization by Iridium Pincer Catalysts. Experimental Evidence for an η3-Allyl Pathway and an Unconventional Mechanism Predicted by DFT Calculations[J]. J Am Chem Soc, 2012,134(32):13276-13295. doi: 10.1021/ja301464c

    13. [13]

      Wu Q, Jin R, Kang C. Ni-catalyzed Cross Coupling of Aryl Grignard Reagents with Aryl Halides in a Nonpolar Solvent and an Efficient Synthesis of Biaryls Under Neat Conditions[J]. Chem Res Chinese Univ, 2016,32(1):55-61. doi: 10.1007/s40242-016-5261-0

    14. [14]

      Han F S. Transition-metal-catalyzed Suzuki-Miyaura Cross-coupling Reactions:A Remarkable Advance from Palladium to Nickel Catalysts[J]. Chem Soc Rev, 2013,42(12):5270-5298. doi: 10.1039/c3cs35521g

    15. [15]

      Lim H J, Smith C R, RajanBabu T. Facile Pd(Ⅱ)- and Ni(Ⅱ)-Catalyzed Isomerization of Terminal Alkenes into 2-Alkenes[J]. J Org Chem, 2009,74(12):4565-4572. doi: 10.1021/jo900180p

    16. [16]

      Gauthier D, Lindhardt A T, Olsen E P. In Situ Generated Bulky Palladium Hydride Complexes as Catalysts for the Efficient Isomerization of Olefins. Selective Transformation of Terminal Alkenes to 2-Alkenes[J]. J Am Chem Soc, 2010,132(23):7998-8009. doi: 10.1021/ja9108424

    17. [17]

      Alphonse F A, Yudin A K. Rhodium-catalyzed Stereoselective Formation of Z-Enamines from Allylaziridines[J]. J Am Chem Soc, 2006,128(36):11754-11755. doi: 10.1021/ja0632557

    18. [18]

      Tsang D S, Yang S, Alphonse F A. Stereoselective Isomerisation of N-Allyl Aziridines into Geometrically Stable Z Enamines by Using Rhodium Hydride Catalysis[J]. Chem Eur J, 2008,14(3):886-894. doi: 10.1002/(ISSN)1521-3765

    19. [19]

      Zhuo L G, Yao Z K, Yu Z X. Synthesis of Z-Alkenes from Rh(Ⅰ)-Catalyzed Olefin Isomerization of β,γ-Unsaturated Ketones[J]. Org Lett, 2013,15(18):4634-4637. doi: 10.1021/ol401607c

    20. [20]

      Arisawa M, Terada Y, Takahashi K. Development of Isomerization and Cycloisomerization with Use of a Ruthenium Hydride with N-Heterocyclic Carbene and Its Application to the Synthesis of Heterocycles[J]. J Org Chem, 2006,71(11):4255-4261. doi: 10.1021/jo060308u

    21. [21]

      Hanessian S, Giroux S, Larsson A. Efficient Allyl to Propenyl Isomerization in Functionally Diverse Compounds with a Thermally Modified Grubbs Second-generation Catalyst[J]. Org Lett, 2006,8(24):5481-5484. doi: 10.1021/ol062167o

    22. [22]

      Sharma S K, Srivastava V K, Jasra R V. Selective Double Bond Isomerization of Allyl Phenyl Ethers Catalyzed by Ruthenium Metal Complexes[J]. J Mol Catal A:Chem, 2006,245(1):200-209.

    23. [23]

      Grotjahn D B, Larsen C R, Gustafson J L. Extensive Isomerization of Alkenes Using a Bifunctional Catalyst:An Alkene Zipper[J]. J Am Chem Soc, 2007,129(31):9592-9593. doi: 10.1021/ja073457i

    24. [24]

      Larsen C R, Grotjahn D B. Stereoselective Alkene Isomerization over One Position[J]. J Am Chem Soc, 2012,134(25):10357-10360. doi: 10.1021/ja3036477

    25. [25]

      Larsen C R, Erdogan G, Grotjahn D B. General Catalyst Control of the Monoisomerization of 1-Alkenes to Trans-2-alkenes[J]. J Am Chem Soc, 2014,136(4):1226-1229. doi: 10.1021/ja411438d

    26. [26]

      Chianese A R, Shaner S E, Tendler J A. Iridium Complexes of Bulky CCC-pincer N-Heterocyclic Carbene Ligands:Steric Control of Coordination Number and Catalytic Alkene Isomerization[J]. Organometallics, 2012,31(21):7359-7367. doi: 10.1021/om300468d

    27. [27]

      Knapp S M M, Shaner S E, Kim D. Mechanistic Studies of Alkene Isomerization Catalyzed by CCC-pincer Complexes of Iridium[J]. Organometallics, 2014,33(2):473-484. doi: 10.1021/om400786r

    28. [28]

      Yamamoto Y, Miyairi T, Ohmura T. Synthesis of Chiral Esters of (E)-3-(Silyloxy)-2-propenylboronic Acid via the Iridium-catalyzed Isomerization of the Double Bond[J]. J Org Chem, 1999,64(1):296-298. doi: 10.1021/jo9814288

    29. [29]

      Sivaramakrishna A, Mushonga P, Rogers I L. Selective Isomerization of 1-Alkenes by Binary Metal Carbonyl Compounds[J]. Polyhedron, 2008,27(7):1911-1916. doi: 10.1016/j.poly.2008.02.026

    30. [30]

      Göttker-Schnetmann I, White P, Brookhart M. Iridium Bis(phosphinite) p-XPCP Pincer Complexes:Highly Active Catalysts for the Transfer Dehydrogenation of Alkanes[J]. J Am Chem Soc, 2004,126(6):1804-1811. doi: 10.1021/ja0385235

    31. [31]

      Chen C, Dugan T R, Brennessel W W. Z-Selective Alkene Isomerization by High-spin Cobalt(Ⅱ) Complexes[J]. J Am Chem Soc, 2014,136(3):945-955. doi: 10.1021/ja408238n

    32. [32]

      Courchay F C, Sworen J C, Ghiviriga I. Understanding Structural Isomerization During Ruthenium-catalyzed Olefin Metathesis:A Deuterium Labeling Study[J]. Organometallics, 2006,25(26):6074-6086. doi: 10.1021/om0509894

    33. [33]

      Morrill T C, D'Souza C A. Efficient Hydride-assisted Isomerization of Alkenes via Rhodium Catalysis[J]. Organometallics, 2003,22(8):1626-1629. doi: 10.1021/om0207358

    34. [34]

      Larionov E, Lin L, Guénée L. Scope and Mechanism in Palladium-catalyzed Isomerizations of Highly Substituted Allylic, Homoallylic, and Alkenyl Alcohols[J]. J Am Chem Soc, 2014,136(48):16882-16894. doi: 10.1021/ja508736u

    35. [35]

      Correa A, Garcia Mancheno O, Bolm C. Iron-catalysed Carbon-heteroatom and Heteroatom-eteroatom Bond Forming Processes[J]. Chem Soc Rev, 2008,37(6):1108-1117. doi: 10.1039/b801794h

    36. [36]

      Bauer E B. Recent Advances in Iron Catalysis in Organic Synthesis[J]. Curr Org Chem, 2008,12(16):1341-1369. doi: 10.2174/138527208786241556

    37. [37]

      Czaplik W M, Mayer M, Cvengro J. Coming of Age:Sustainable Iron-catalyzed Cross-coupling Reactions[J]. ChemSusChem, 2009,2(5):396-417. doi: 10.1002/cssc.v2:5

    38. [38]

      Frankel E N, Emken E A, Davison V L. Isomerization of Unsaturated Fatty Esters by Iron Pentacarbonyl. Preparation of Iron Tricarbonyl Complexes of Polyunsaturated Fats[J]. J Am Oil Chem Soc, 1966,43(5):307-311. doi: 10.1007/BF02609679

    39. [39]

      Casey C P, Cyr C R. Iron Carbonyl Catalyzed Isomerization of 3-Ethyl-1-pentene. Multiple Olefin Isomerizations via a π-Allyl Metal Hydride Intermediate[J]. J Am Chem Soc, 1973,95(7):2248-2253. doi: 10.1021/ja00788a025

    40. [40]

      De Pasquale R J. Isomerization of Estragole to Anethole[J]. Synth Commun, 2006,10(3):225-231.

    41. [41]

      Tooley P A, Arndt L W, Darensbourg M Y. Olefin Isomerization Catalysis by Heterobimetallic Hydrides, HFeM(CO)8L-(M=Cr,Mo,W; L=Co,Pr3)[J]. J Am Chem Soc, 1985,107(8):2422-2427. doi: 10.1021/ja00294a037

    42. [42]

      Reddy M R, Periasamy M. Isomerization of 1-Alkenes Using the Na2Fe(Co)4/CuCl and Na2Fe(Co)4/BrCH2CH2Br Reagent Systems[J]. J Organomet Chem, 1995,491(1/2):263-266.

    43. [43]

      Crivello J V, Kong S Q. Efficient Isomerization of Allyl Ethers and Related Compounds Using Pentacarbonyliron[J]. J Org Chem, 1998,63(19):6745-6748. doi: 10.1021/jo980581z

    44. [44]

      Jennerjahn R, Jackstell R, Piras I. Benign Catalysis with Iron:Unique Selectivity in Catalytic Isomerization Reactions of Olefins[J]. Chem Sus Chem, 2012,5(4):734-739. doi: 10.1002/cssc.v5.4

    45. [45]

      Mayer M, Welther A, Jacobi von Wangelin A. Iron-catalyzed Isomerizations of Olefins[J]. Chem Cat Chem, 2011,3(10):1567-1571.  

    46. [46]

      Karapinka G L, Orchin M. The Stoichiometric Hydroformylation of 1-Pentene at Room Conditions1[J]. J Org Chem, 1961,26(11):4187-4190. doi: 10.1021/jo01069a001

    47. [47]

      Roos L, Orchin M. Allylbenzene Isomerization Catalyzed by Deuteriocobalt Tetracarbonyl[J]. J Am Chem Soc, 1965,87(23):5502-5504.  

    48. [48]

      McCormack W E, Orchin M. The Cobalt Hydrocarbonyl-catalyzed Isomerization of Allylbenzene[J]. J Organomet Chem, 1977,129(1):127-137. doi: 10.1016/S0022-328X(00)93234-0

    49. [49]

      Onishi M, Oishi S, Sakaguchi M. Chemical Reactivities of Coordinatively Unsaturated Hydridotris(Phosphonite) Cobalt(Ⅰ) Species Photogenerated Towards Allylic and Related Compounds[J]. Bull Chem Soc Jpn, 1986,59(12):3925-3930. doi: 10.1246/bcsj.59.3925

    50. [50]

      Onishi M, Hiraki K, Ishida Y. Facile Electrogeneration of a 17-Electron Species from an Inert Hydridophosphonitecobalt(Ⅰ) for Catalytic Double-Bond Migration of 3-Phenylpropene[J]. Chem Lett, 1986,15(3):333-336. doi: 10.1246/cl.1986.333

    51. [51]

      Satyanarayana N, Periasamy M. Isomerization of Olefins Catalysed by a CoCl2/Ph3P/NaBH4 System[J]. J Organomet Chem, 1987,319(1):113-117. doi: 10.1016/0022-328X(87)80353-4

    52. [52]

      Kobayashi T, Ohmiya H, Yorimitsu H. Cobalt-catalyzed Regioselective Dehydrohalogenation of Alkyl Halides with Dimethylphenylsilylmethylmagnesium Chloride[J]. J Am Chem Soc, 2008,130(34):11276-11277. doi: 10.1021/ja804277x

    53. [53]

      Kobayashi T, Yorimitsu H, Oshima K. Cobalt-catalyzed Isomerization of 1-Alkenes to (E)-2-Alkenes with Dimethylphenylsilylmethylmagnesium Chloride and Its Application to the Stereoselective Synthesis of (E)-Alkenylsilanes[J]. Chem Asian J, 2009,4(7):1078-1083. doi: 10.1002/asia.v4:7

    54. [54]

      Bohn M A, Schmidt A, Hilt G. Cobalt-catalyzed 1,4-Hydrobutadienylation of 1-Aryl-1,3-dienes with 2,3-Dimethyl-1,3-butadiene[J]. Angew Chem Int Ed, 2011,50(41):9689-9693. doi: 10.1002/anie.201103613

    55. [55]

      Punner F, Schmidt A, Hilt G. Up the Hill:Selective Double-bond Isomerization of Terminal 1,3-Dienes Towards Z-1,3-Dienes or 2Z,4E-Dienes[J]. Angew Chem Int Ed, 2012,51(5):1270-1273. doi: 10.1002/anie.201107512

    56. [56]

      Schmidt A, Hilt G. Unprecedented Cobalt-catalyzed Isomerization Reactions to Single Skipped 2,4,7-Trienes Applied in the Synthesis of Urushiol[J]. Chem Asian J, 2014,9(9):2407-2410. doi: 10.1002/asia.201402323

    57. [57]

      Crossley S W, Barabe F, Shenvi R A. Simple, Chemoselective, Catalytic Olefin Isomerization[J]. J Am Chem Soc, 2014,136(48):16788-16791. doi: 10.1021/ja5105602

    58. [58]

      Cramer R, Lindsey Jr R. The Mechanism of Isomerization of Olefins with Transition Metal Catalysts[J]. J Am Chem Soc, 1966,88(15):3534-3544. doi: 10.1021/ja00967a013

    59. [59]

      Tolman C A. Chemistry of Tetrakis(triethyl phosphite)nickel Hydride, HNi[P(OEt)3]4+.IV.Mechanism of Olefin Isomerization[J]. J Am Chem Soc, 1972,94(9):2994-2999. doi: 10.1021/ja00764a016

    60. [60]

      Bontempelli G, Daniele S, Schiavon G. An Electroanalytical Investigation of the Olefin Isomerization Reaction Promoted by Electrogenerated Cationic Nickel(Ⅰ) Complexes[J]. Trans Met Chem, 1987,12(4):292-295. doi: 10.1007/BF01024015

    61. [61]

      Bontempelli G, Fiorani M, Daniele S. An Electroanalytical Investigation on the Olefin Isomerization Reaction Promoted by Electrogenerated Cationic Nickel Hydrides[J]. J Mol Catal, 1987,40(1):9-21. doi: 10.1016/0304-5102(87)80002-0

    62. [62]

      Bricout H, Mortreux A, Monflier E. Isomerization of Olefins in a Two-phase System by Homogeneous Water-soluble Nickel Complexes[J]. J Organomet Chem, 1998,553(1):469-471.  

    63. [63]

      Kuntz E G, Godard G, Basset J M. Nickel(0)-TPPTS-Cyanide Complex in Water. An Efficient and Flexible Catalyst for the Isomerisation of Olefinic Compounds at Room Temperature[J]. Oil Gas Sci Technol-Revue de l'IFP, 2007,62(6):781-785. doi: 10.2516/ogst:2007036

    64. [64]

      Wille A, Tomm S, Frauenrath H. A Highly Z-Selective Isomerization(double-bond migration) Procedure for Allyl Acetals and Allyl Ethers Mediated by Nickel Complexes[J]. Synthesis, 1998,1998(3):305-308. doi: 10.1055/s-1998-2028

    65. [65]

      Wang L, Liu C, Bai R. Easy Access to Enamides:A Mild Nickel-catalysed Alkene Isomerization of Allylamides[J]. Chem Commun, 2013,49(72):7923-7925. doi: 10.1039/c3cc43875a

    66. [66]

      Weber F, Schmidt A, Rose P. Double-bond Isomerization:Highly Reactive Nickel Catalyst Applied in the Synthesis of the Pheromone (9z,12z)-Tetradeca-9,12-dienyl Acetate[J]. Org Lett, 2015,17(12):2952-2955. doi: 10.1021/acs.orglett.5b01230

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    20. [20]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

Metrics
  • PDF Downloads(19)
  • Abstract views(3064)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return