Advances on Fluorescent Sensors for Detection of Explosives
- Corresponding author: YE Shanghui, iamshye@njupt.edu.cn HUANG Wei, iamwhuang@njupt.edu.cn
Citation:
LIU Liping, YE Shanghui, HUANG Wei. Advances on Fluorescent Sensors for Detection of Explosives[J]. Chinese Journal of Applied Chemistry,
;2017, 34(1): 1-24.
doi:
10.11944/j.issn.1000-0518.2017.01.160131
Germain M E, Knapp M J. Optical Explosives Detection:From Color Changes to Fluorescence Turn-On[J]. Chem Soc Rev, 2009,38(9):2543-2555. doi: 10.1039/b809631g
Salinas Y, Martinez-Manez R, Marcos M D. Optical Chemosensors and Reagents to Detect Explosives[J]. Chem Soc Rev, 2012,41(3):1261-1296. doi: 10.1039/C1CS15173H
Senthamizhan A, Celebioglu A, Bayir S. Highly Fluorescent Pyrene-Functional Polystyrene Copolymer Nanofibers for Enhanced Sensing Performance of Tnt[J]. ACS Appl Mater Interfaces, 2015,7(38):21038-21046. doi: 10.1021/acsami.5b07184
Bhalla V, Kaur S, Vij V. Mercury-Modulated Supramolecular Assembly of a Hexaphenylbenzene Derivative for Selective Detection of Picric Acid[J]. Inorg Chem, 2013,52(9):4860-4865. doi: 10.1021/ic3023997
Zhang H Q, Euler W B. Detection of Gas-Phase Explosive Analytes Using Fluorescent Spectroscopy of Thin Films of Xanthene Dyes[J]. Sens Actuators,B, 2016,225:553-562. doi: 10.1016/j.snb.2015.11.098
Kartha K K, Babu S S, Srinivasan S. Attogram Sensing of Trinitrotoluene with a Self-Assembled Molecular Gelator[J]. J Am Chem Soc, 2012,134(10):4834-4841. doi: 10.1021/ja210728c
Liu X, Xu Y, Jiang D. Conjugated Microporous Polymers as Molecular Sensing Devices:Microporous Architecture Enables Rapid Response and Enhances Sensitivity in Fluorescence-On and Fluorescence-Off Sensing[J]. J Am Chem Soc, 2012,134(21):8738-8741. doi: 10.1021/ja303448r
Rochat S, Swager T M. Conjugated Amplifying Polymers for Optical Sensing Applications[J]. ACS Appl Mater Interfaces, 2013,5(11):4488-4502. doi: 10.1021/am400939w
Yang Jye-Shane S T M. Porous Shape Persistent Fluorescent Polymer Films:An Approach to TNT Sensory Material[J]. J Am Chem Soc, 1998,120(21):5321-5322. doi: 10.1021/ja9742996
Wang A, Cui Y, Tao F. Fluorescent Film Sensor for Nitroaromatics Prepared via Grafting a Conjugated Polymer on a Glass Slide Surface[J]. Russ J Phys Chem A, 2016,90(2):399-405. doi: 10.1134/S0036024415130026
Zhou L L, Li M, Lu H Y. Benzo[5] helicene-based Conjugated Polymers:Synthesis, Photophysical Properties, and Application for the Detection of Nitroaromatic Explosives[J]. Polym Chem, 2016,7(2):310-318. doi: 10.1039/C5PY01794G
Thomas S W, Ⅲ, Joly G D, Swager T M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers[J]. Chem Rev, 2007,107(4):1339-1386. doi: 10.1021/cr0501339
Sun X, Wang Y, Lei Y. Fluorescence Based Explosive Detection:From Mechanisms to Sensory Materials[J]. Chem Soc Rev, 2015,44(22):8019-8061. doi: 10.1039/C5CS00496A
Chang C P, Chao C Y, Huang J H. Fluorescent Conjugated Polymer Films as TNT Chemosensors[J]. Synth Met, 2004,144(3):297-301. doi: 10.1016/j.synthmet.2004.04.003
Chen L H, McBranch D, Wang R. Surfactant-Induced Modification of Quenching of Conjugated Polymer Fluorescence by Electron Acceptors:Applications for Chemical Sensing[J]. Chem Phys Lett, 2000,330(1/2):27-33.
Duniho T L, Laughlin B J, Buelt A A. Conjugated Polymers for the Fluorescent Detection of Nitroaromatics:Influence of Side-Chain Sterics and Pi-System Electronics[J]. J Polym Sci,Part A:Polym Chem, 2014,52(10):1487-1492. doi: 10.1002/pola.v52.10
Gopalakrishnan D, Dichtel W R. Direct Detection of RDX Vapor Using a Conjugated Polymer Network[J]. J Am Chem Soc, 2013,135(22):8357-8362. doi: 10.1021/ja402668e
Feng L, Li H, Qu Y. Detection of TNT Based on Conjugated Polymer Encapsulated in Mesoporous Silica Nanoparticles Through FRET[J]. Chem Commun, 2012,48(38):4633-4635. doi: 10.1039/c2cc16115j
Zhang H, Feng L, Liu B. Conjugation of PPV Functionalized Mesoporous Silica Nanoparticles with Graphene Oxide for Facile and Sensitive Fluorescence Detection of TNT in Water Through FRET[J]. Dyes Pigm, 2014,101:122-129. doi: 10.1016/j.dyepig.2013.09.040
Cotts P M, Swager T M, Zhou Q. Equilibrium Flexibility of a Rigid Linear Conjugated Polymer[J]. Macromolecules, 1996,29(23):7323-7328. doi: 10.1021/ma9602583
Yang J S, Swager T M. Porous Shape Persistent Fluorescent Polymer Films:An Approach to TNT Sensory Materials[J]. J Am Chem Soc, 1998,120(21):5321-5322. doi: 10.1021/ja9742996
Zyryanov G V, Palacios M A, Anzenbacher P Jr. Simple Molecule-Based Fluorescent Sensors for Vapor Detection of TNT[J]. Org Lett, 2008,10(17):3681-3684. doi: 10.1021/ol801030u
Yamaguchi S, Swager T M. Oxidative Cyclization of Bis(Biaryl)Acetylenes:Synthesis and Photophysics of Dibenzo G,P Chrysene-Based Fluorescent Polymers[J]. J Am Chem Soc, 2001,123(48):12087-12088. doi: 10.1021/ja016692o
Zahn S, Swager T M. Three-Dimensional Electronic Delocalization in Chiral Conjugated Polymers[J]. Angew Chem Int Ed, 2002,41(22):4225-4230. doi: 10.1002/1521-3773(20021115)41:22<4225::AID-ANIE4225>3.0.CO;2-3
Cox J R, Mueller P, Swager T M. Interrupted Energy Transfer:Highly Selective Detection of Cyclic Ketones in the Vapor Phase[J]. J Am Chem Soc, 2011,133(33):12910-12913. doi: 10.1021/ja202277h
He G, Yan N, Yang J. Pyrene-Containing Conjugated Polymer-Based Fluorescent Films for Highly Sensitive and Selective Sensing of TNT in Aqueous Medium[J]. Macromolecules, 2011,44(12):4759-4766. doi: 10.1021/ma200953s
Sabatani E, Kalisky Y, Berman A. Photoluminescence of Polydiacetylene Membranes on Porous Silicon Utilized for Chemical Sensors[J]. Opt Mater, 2008,30(11):1766-1774. doi: 10.1016/j.optmat.2007.11.025
Lee W E, Oh C J, Kang I K. Diphenylacetylene Polymer Nanofiber Mats Fabricated by Freeze Drying:Preparation and Application for Explosive Sensors[J]. Macromol Chem Phys, 2010,211(17):1900-1908. doi: 10.1002/macp.201000216
Liang Z, Chen H, Wang X. F127/Conjugated Polymers Fluorescent Micelles for Trace Detection of Nitroaromatic Explosives[J]. Dyes Pigm, 2016,125:367-374. doi: 10.1016/j.dyepig.2015.10.045
Marks P, Cohen S, Levine M. Highly Efficient Quenching of Nanoparticles for the Detection of Electron-Deficient Nitroaromatics[J]. J Polym Sci,Part A:Polym Chem, 2013,51(19):4150-4155. doi: 10.1002/pola.26824
Xu B, Xu Y, Wang X. Porous Films Based on a Conjugated Polymer Gelator for Fluorescent Detection of Explosive Vapors[J]. Polym Chem, 2013,4(19):5056-5059. doi: 10.1039/c3py00806a
Venkatramaiah N, Kumar S, Patil S. Fluoranthene Based Fluorescent Chemosensors for Detection of Explosive Nitroaromatics[J]. Chem Commun, 2012,48(41):5007-5009. doi: 10.1039/c2cc31606d
Leng H, Wu W. Synthesis of a Novel Fluorene-Based Conjugated Polymer with Pendent Bulky Caged Adamantane Moieties and Its Application in the Detection of Trace DNT Explosives[J]. React Funct Polym, 2012,72(3):206-211. doi: 10.1016/j.reactfunctpolym.2012.01.002
Nie H, Zhao Y, Zhang M. Detection of TNT Explosives with a New Fluorescent Conjugated Polycarbazole Polymer[J]. Chem Commun, 2011,47(4):1234-1236. doi: 10.1039/C0CC03659E
Wang D H, Cui Y Z, Tao F R. A Novel Film of Conjugated Polymer Grafted onto Gelatin for Detecting Nitroaromatics Vapor with Excellent Inhibiting Photobleaching[J]. Sens Actuators,B, 2016,225:319-326. doi: 10.1016/j.snb.2015.11.038
Kim H N, Guo Z, Zhu W. Recent Progress on Polymer-Based Fluorescent and Colorimetric Chemosensors[J]. Chem Soc Rev, 2011,40(1):79-93. doi: 10.1039/C0CS00058B
Nagarjuna G, Kumar A, Kokil A. Enhancing Sensing of Nitroaromatic Vapours by Thiophene-Based Polymer Films[J]. J Mater Chem, 2011,21(41):16597-16602. doi: 10.1039/c1jm12949j
Balan B, Vijayakumar C, Tsuji M. Detection and Distinction of DNT and TNT with a Fluorescent Conjugated Polymer Using the Microwave Conductivity Technique[J]. J Phys Chem B, 2012,116(34):10371-10378. doi: 10.1021/jp304791r
Chen S, Zhang Q, Zhang J. Synthesis of Two Conjugated Polymers as TNT Chemosensor Materials[J]. Sens Actuators,B, 2010,149(1):155-160. doi: 10.1016/j.snb.2010.06.007
Zarei A R, Ghazanchayi B. Design and Fabrication of Optical Chemical Sensor for Detection of Nitroaromatic Explosives Based on Fluorescence Quenching of Phenol Red Immobilized Polyvinyl Alcohol) Membrane[J]. Talanta, 2016,150:162-168. doi: 10.1016/j.talanta.2015.12.014
Saxena A, Fujiki M, Rai R. Fluoroalkylated Polysilane Film as a Chemosensor for Explosive Nitroaromatic Compounds[J]. Chem Mater, 2005,17(8):2181-2185. doi: 10.1021/cm048319w
Hussain S, Malik A H, Afroz M A. Ultrasensitive Detection of Nitroexplosive - Picric Acid Via a Conjugated Polyelectrolyte in Aqueous Media and Solid Support[J]. Chem Commun, 2015,51(33):7207-7210. doi: 10.1039/C5CC02194D
Malik A H, Hussain S, Kalita A. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-Explosive Picric Acid on Multiple Platforms[J]. ACS Appl Mater Interfaces, 2015,7(48):26968-26976. doi: 10.1021/acsami.5b08068
Rahman M, Harmon H J. Absorbance Change and Static Quenching of Fluorescence of Meso-Tetra(4-Sulfonatophenyl)Porphyrin(TPPS) by Trinitrotoluene(TNT)[J]. Spectrochim Acta,Part A, 2006,65(3-4):901-906. doi: 10.1016/j.saa.2006.01.029
Hikal W M, Harmon H J. Early Events in 2,4,6-Trinitrotoluene(TNT) Degradation by Porphyrins:Binding of TNT to Porphyrin by Hydrophobic and Hydrogen Bonds[J]. J Hazard Mater, 2008,154(1-3):826-831. doi: 10.1016/j.jhazmat.2007.10.098
Venkatramaiah N, Pereira C F, Mendes R F. Phosphonate Appended Porphyrins as Versatile Chemosensors for Selective Detection of Trinitrotoluene[J]. Anal Chem, 2015,87(8):4515-4522. doi: 10.1021/acs.analchem.5b00772
Swamy C A P, Thilagar P. Polyfunctional Lewis Acids:Intriguing Solid-State Structure and Selective Detection and Discrimination of Nitroaromatic Explosives[J]. Chem Eur J, 2015,21(24):8874-8882. doi: 10.1002/chem.201500727
Lee Y H, Liu H, Lee J Y. Dipyrenylcalix[4] arene-A Fluorescence-Based Chemosensor for Trinitroaromatic Explosives[J]. Chem Eur J, 2010,16(20):5895-5901. doi: 10.1002/chem.200903439
Kim S B, Lee E B, Choi J H. Simple Fluorescent Chemosensors for TNT:One-Step Synthesis[J]. Tetrahedron, 2013,69(23):4652-4656. doi: 10.1016/j.tet.2013.03.108
Singla P, Kaur P, Singh K. Discrimination in Excimer Emission Quenching of Pyrene by Nitroaromatics[J]. Tetrahedron Lett, 2015,56(18):2311-2314. doi: 10.1016/j.tetlet.2015.03.053
Chen W, Zuckerman N B, Konopelski J P. Pyrene-Functionalized Ruthenium Nanoparticles as Effective Chemosensors for Nitroaromatic Derivatives[J]. Anal Chem, 2010,82(2):461-465. doi: 10.1021/ac902394s
Venkatramaiah N, Firmino A D G, Paz F A A. Fast Detection of Nitroaromatics Using Phosphonate Pyrene Motifs as Dual Chemosensors[J]. Chem Commun, 2014,50(68):9683-9686. doi: 10.1039/C4CC03980G
Vijayakumar C, Tobin G, Schmitt W. Detection of Explosive Vapors with a Charge Transfer Molecule:Self-Assembly Assisted Morphology Tuning and Enhancement in Sensing Efficiency[J]. Chem Commun, 2010,46(6):874-876. doi: 10.1039/b921520d
Roy B, Bar A K, Gole B. Fluorescent Tris-Imidazolium Sensors for Picric Acid Explosive[J]. J Org Chem, 2013,78(3):1306-1310. doi: 10.1021/jo302585a
Niamnont N, Kimpitak N, Wongravee K. Tunable Star-Shaped Triphenylamine Fluorophores for Fluorescence Quenching Detection and Identification of Nitro-Aromatic Explosives[J]. Chem Commun, 2013,49(8):780-782. doi: 10.1039/C2CC34008A
Pramanik S, Bhalla V, Kumar M. Hexaphenylbenzene-Based Fluorescent Aggregates for Ratiometric Detection of Cyanide Ions at Nanomolar Level:Set-Reset Memorized Sequential Logic Device[J]. ACS Appl Mater Interfaces, 2014,6(8):5930-5939. doi: 10.1021/am500903d
Meaney M S, McGuffin V L. Investigation of Common Fluorophores for the Detection of Nitrated Explosives by Fluorescence Quenching[J]. Anal Chim Acta, 2008,610(1):57-67. doi: 10.1016/j.aca.2008.01.016
Peveler W J, Roldan A, Hollingsworth N. Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array[J]. ACS Nano, 2016,10(1):1139-1146. doi: 10.1021/acsnano.5b06433
An N, Gonzalez C M, Sinelnikov R. Detection of Nitroaromatics in the Solid, Solution, and Vapor Phases Using Silicon Quantum Dot Sensors[J]. Nanotechnology, 2016,27(10)105501. doi: 10.1088/0957-4484/27/10/105501
Yi K Y. Application of Cdse Quantum Dots for the Direct Detection of Tnt[J]. Forensic Sci Int, 2016,259:101-105. doi: 10.1016/j.forsciint.2015.12.028
Chen Y, Chen Z, He Y. L-Cysteine-Capped CdTe QD-Based Sensor for Simple and Selective Detection of Trinitrotoluene[J]. Nanotechnology, 2010,21(12)125502. doi: 10.1088/0957-4484/21/12/125502
Zhang K, Zhou H, Mei Q. Instant Visual Detection of Trinitrotoluene Particulates on Various Surfaces by Ratiometric Fluorescence of Dual-Emission Quantum Dots Hybrid[J]. J Am Chem Soc, 2011,133(22):8424-8427. doi: 10.1021/ja2015873
Zhang K, Yang L, Zhu H. Selective Visual Detection of Trace Trinitrotoluene Residues Based on Dual-Color Fluorescence of Graphene Oxide-Nanocrystals Hybrid Probe[J]. Analyst, 2014,139(10):2379-2385. doi: 10.1039/c3an02380j
Fan L, Hu Y, Wang X. Fluorescence Resonance Energy Transfer Quenching at the Surface of Graphene Quantum Dots for Ultrasensitive Detection of Tnt[J]. Talanta, 2012,101:192-197. doi: 10.1016/j.talanta.2012.08.048
Liu S, Shi F, Chen L. Bovine Serum Albumin Coated CuInS2 Quantum Dots as a Near-Infrared Fluorescence Probe for 2,4,6-Trinitrophenol Detection[J]. Talanta, 2013,116:870-875. doi: 10.1016/j.talanta.2013.07.073
Niu Q, Gao K, Lin Z. Amine-Capped Carbon Dots as a Nanosensor for Sensitive and Selective Detection of Picric Acid in Aqueous Solution Via Electrostatic Interaction[J]. Anal Methods, 2013,5(21):6228-6233. doi: 10.1039/c3ay41275j
Chen H Y, Ruan L W, Jiang X. Trace Detection of Nitro Aromatic Explosives by Highly Fluorescent g-C3N4 Nanosheets[J]. Analyst, 2015,140(2):637-643. doi: 10.1039/C4AN01693A
Liao Y Z, Strong V, Wang Y. Oligotriphenylene Nanofiber Sensors for Detection of Nitro-Based Explosives[J]. Adv Funct Mater, 2012,22(4):726-735. doi: 10.1002/adfm.201102013
Li X G, Liao Y Z, Huang M R. Ultra-Sensitive Chemosensors for Fe(Ⅲ) and Explosives Based on Highly Fluorescent Oligofluoranthene[J]. Chem Sci, 2013,4(5):1970-1978. doi: 10.1039/c3sc22107e
Ding L, Fang Y. Chemically Assembled Monolayers of Fluorophores as Chemical Sensing Materials[J]. Chem Soc Rev, 2010,39(11):4258-4273. doi: 10.1039/c003028g
Du H, He G, Liu T. Preparation of Pyrene-Functionalized Fluorescent Film with a Benzene Ring in Spacer and Sensitive Detection to Picric Acid in Aqueous Phase[J]. J Photochem Photobiol,A, 2011,217(2-3):356-362. doi: 10.1016/j.jphotochem.2010.11.004
Ding L, Liu Y, Cao Y. A Single Fluorescent Self-Assembled Monolayer Film Sensor with Discriminatory Power[J]. J Mater Chem, 2012,22(23):11574-11582. doi: 10.1039/c2jm30697b
Ma Y, Li H, Peng S. Highly Selective and Sensitive Fluorescent Paper Sensor for Nitroaromatic Explosive Detection[J]. Anal Chem, 2012,84(19):8415-8421. doi: 10.1021/ac302138c
Feng L, Wang C, Ma Z. 8-Hydroxyquinoline Functionalized ZnS Nanoparticles Capped with Amine Groups:A Fluorescent Nanosensor for the Facile and Sensitive Detection of Tnt through Fluorescence Resonance Energy Transfer[J]. Dyes Pigm, 2013,97(1):84-91. doi: 10.1016/j.dyepig.2012.11.023
Zou W S, Wang Y Q, Wang F. Selective Fluorescence Response and Magnetic Separation Probe for 2,4,6-Trinitrotoluene Based on Iron Oxide Magnetic Nanoparticles[J]. Anal Bioanal Chem, 2013,405(14):4905-4912. doi: 10.1007/s00216-013-6873-6
Xu Y, Li B, Li W. “ICT-Not-Quenching” Near Infrared Ratiometric Fluorescent Detection of Picric Acid in Aqueous Media[J]. Chem Commun, 2013,49(42):4764-4766. doi: 10.1039/c3cc41994k
Sivaraman G, Vidya B, Chellappa D. Rhodamine Based Selective Turn-on Sensing of Picric Acid[J]. RSC Adv, 2014,4(58):30828-30831. doi: 10.1039/C4RA02931C
Madhu S, Bandela A, Ravikanth M. Bodipy Based Fluorescent Chemodosimeter for Explosive Picric Acid in Aqueous Media and Rapid Detection in the Solid State[J]. RSC Adv, 2014,4(14):7120-7123. doi: 10.1039/c3ra46565a
Gole B, Shanmugaraju S, Bar A K. Supramolecular Polymer for Explosives Sensing:Role of H-Bonding in Enhancement of Sensitivity in the Solid State[J]. Chem Commun, 2011,47(36):10046-10048. doi: 10.1039/c1cc13925h
Shanmugaraju S, Jadhav H, Karthik R. Electron Rich Supramolecular Polymers as Fluorescent Sensors for Nitroaromatics[J]. RSC Adv, 2013,3(15):4940-4950. doi: 10.1039/c3ra23269g
Gole B, Song W, Lackinger M. Explosives Sensing by Using Electron-Rich Supramolecular Polymers:Role of Intermolecular Hydrogen Bonding in Significant Enhancement of Sensitivity[J]. Chem Eur J, 2014,20(42):13662-13680. doi: 10.1002/chem.v20.42
Bahring S, Martin-Gomis L, Olsen G. Design and Sensing Properties of a Self-Assembled Supramolecular Oligomer[J]. Chem Eur J, 2016,22(6):1958-1967. doi: 10.1002/chem.201503701
Ponnu A, Anslyn E V. A Fluorescence-Based Cyclodextrin Sensor to Detect Nitroaromatic Explosives[J]. Supramol Chem, 2010,22(1):65-71. doi: 10.1080/10610270903378032
Feng L, Tong C, He Y. A Novel Fret-Based Fluorescent Chemosensor of Beta-Cyclodextrin Derivative for TNT Detection in Aqueous Solution[J]. J Lumin, 2014,146:502-507. doi: 10.1016/j.jlumin.2013.10.039
Algarra M, Campos B B, Miranda M S. CdSe Quantum Dots Capped PAMAM Dendrimer Nanocomposites for Sensing Nitroaromatic Compounds[J]. Talanta, 2011,83(5):1335-1340. doi: 10.1016/j.talanta.2010.10.056
Hu Z, Deibert B J, Li J. Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection[J]. Chem Soc Rev, 2014,43(16):5815-5840. doi: 10.1039/C4CS00010B
Zhang M, Zhang L, Xiao Z. Pentiptycene-Based Luminescent Cu(Ⅱ) MOF Exhibiting Selective Gas Adsorption and Unprecedentedly High-Sensitivity Detection of Nitroaromatic Compounds(Nacs)[J]. Sci Rep, 2016,620672. doi: 10.1038/srep20672
Nagarkar S S, Joarder B, Chaudhari A K. Highly Selective Detection of Nitro Explosives by a Luminescent Metal-Organic Framework[J]. Angew Chem Int Ed, 2013,52(10):2881-2885. doi: 10.1002/anie.201208885
Nagarkar S S, Desai A V, Ghosh S K. A Fluorescent Metal-Organic Framework for Highly Selective Detection of Nitro Explosives in the Aqueous Phase[J]. Chem Commun, 2014,50(64):8915-8918. doi: 10.1039/C4CC03053B
Chaudhari A K, Nagarkar S S, Joarder B. A Continuous Pi-Stacked Starfish Array of Two-Dimensional Luminescent Mof for Detection of Nitro Explosives[J]. Cryst Growth Des, 2013,13(8):3716-3721. doi: 10.1021/cg400749m
Dalapati S, Jin S, Gao J. An Azine-Linked Covalent Organic Framework[J]. J Am Chem Soc, 2013,135(46):17310-17313. doi: 10.1021/ja4103293
Liu J, Yang S, Li F. Highly Fluorescent Polymeric Nanoparticles Based on Melamine for Facile Detection of TNT in Soil[J]. J Mater Chem A, 2015,3(18):10069-10076. doi: 10.1039/C5TA00185D
Wang H, Liang Y, Xie H. Unexpected SiMe3 Effect on Color-Tunable and Fluorescent Probes of Dendritic Polyphenyl Naphthalimides with Aggregation-Induced Emission Enhancement[J]. J Mater Chem C, 2016,4(4):745-750. doi: 10.1039/C5TC03344F
Zhao Z, Jiang T, Guo Y. Silole-Containing Poly(Silylenevinylene)S:Synthesis, Characterization, Aggregation-Enhanced Emission, and Explosive Detection[J]. J Polym Sci,Part A:Polym Chem, 2012,50(11):2265-2274. doi: 10.1002/pola.v50.11
Li J, Liu J, Lam J W Y. Poly(Arylene Ynonylene) with an Aggregation-Enhanced Emission Characteristic:A Fluorescent Sensor for Both Hydrazine and Explosive Detection[J]. RSC Adv, 2013,3(22):8193-8196. doi: 10.1039/c3ra40867a
Hu R, Leung N L C, Tang B Z. AIE Macromolecules:Syntheses, Structures and Functionalities[J]. Chem Soc Rev, 2014,43(13):4494-4562. doi: 10.1039/c4cs00044g
Qin A, Tang L, Lam J W Y. Metal-Free Click Polymerization:Synthesis and Photonic Properties of Poly(Aroyltriazole)s[J]. Adv Funct Mater, 2009,19(12):1891-1900. doi: 10.1002/adfm.v19:12
Lu P, Lam J W Y, Liu J. Aggregation-Induced Emission in a Hyperbranched Poly(Silylenevinylene) and Superamplification in Its Emission Quenching by Explosives[J]. Macromol Rapid Commun, 2010,31(9/10):834-839.
Hu R, Lam J W Y, Liu J. Hyperbranched Conjugated Poly(Tetraphenylethene):Synthesis, Aggregation-Induced Emission, Fluorescent Photopatterning, Optical Limiting and Explosive Detection[J]. Polym Chem, 2012,3(6):1481-1489. doi: 10.1039/c2py20057k
Li H, Wu H, Zhao E. Hyperbranched Poly(Aroxycarbonyltriazole)s:Metal-Free Click Polymerization, Light Refraction, Aggregation-Induced Emission, Explosive Detection, and Fluorescent Patterning[J]. Macromolecules, 2013,46(10):3907-3914. doi: 10.1021/ma400609m
Hu R, Luis Maldonado J, Rodriguez M. Luminogenic Materials Constructed from Tetraphenylethene Building Blocks:Synthesis, Aggregation-Induced Emission, Two-Photon Absorption, Light Refraction, and Explosive Detection[J]. J Mater Chem, 2012,22(1):232-240. doi: 10.1039/C1JM13556B
Zhou H, Li J, Chua M H. Poly(Acrylate) with a Tetraphenylethene Pendant with Aggregation-Induced Emission(AIE) Characteristics:Highly Stable AIE-Active Polymer Nanoparticles for Effective Detection of Nitro Compounds[J]. Polym Chem, 2014,5(19):5628-5637. doi: 10.1039/C4PY00518J
Liu J, Zhong Y, Lu P. A Superamplification Effect in the Detection of Explosives by a Fluorescent Hyperbranched Poly(Silylenephenylene) with Aggregation-Enhanced Emission Characteristics[J]. Polym Chem, 2010,1(4):426-429. doi: 10.1039/c0py00046a
Zhou H, Ye Q, Neo W T. Electrospun Aggregation-Induced Emission Active Poss-Based Porous Copolymer Films for Detection of Explosives[J]. Chem Commun, 2014,50(89):13785-13788. doi: 10.1039/C4CC06559J
Dong W, Pan Y, Fritsch M. High Sensitivity Sensing of Nitroaromatic Explosive Vapors Based on Polytriphenylamines with AIE-Active Tetraphenylethylene Side Groups[J]. J Polym Sci,Part A:Polym Chem, 2015,53(15):1753-1761. doi: 10.1002/pola.27631
Kaur S, Gupta A, Bhalla V. Pentacenequinone Derivatives:Aggregation-Induced Emission Enhancement, Mechanism and Fluorescent Aggregates for Superamplified Detection of Nitroaromatic Explosives[J]. J Mater Chem C, 2014,2(35):7356-7363. doi: 10.1039/C4TC01194E
Xu B, Wu X, Li H. Selective Detection of TNT and Picric Acid by Conjugated Polymer Film Sensors with Donor-Acceptor Architecture[J]. Macromolecules, 2011,44(13):5089-5092. doi: 10.1021/ma201003f
Feng H T, Wang J H, Zheng Y S. CH3-π Interaction of Explosives with Cavity of a TPE Macrocycle:The Key Cause for Highly Selective Detection of TNT[J]. ACS Appl Mater Interfaces, 2014,6(22):20067-20074. doi: 10.1021/am505636f
Vij V, Bhalla V, Kumar M. Attogram Detection of Picric Acid by Hexa-Peri-Hexabenzocoronene-Based Chemosensors by Controlled Aggregation-Induced Emission Enhancement[J]. ACS Appl Mater Interfaces, 2013,5(11):5373-5380. doi: 10.1021/am401414g
Pramanik S, Bhalla V, Kumar M. Mercury Assisted Fluorescent Supramolecular Assembly of Hexaphenylbenzene Derivative for Femtogram Detection of Picric Acid[J]. Anal Chim Acta, 2013,793:99-106. doi: 10.1016/j.aca.2013.07.023
Li D, Liu J, Kwok R T K. Supersensitive Detection of Explosives by Recyclable AIE Luminogen-Functionalized Mesoporous Materials[J]. Chem Commun, 2012,48(57):7167-7169. doi: 10.1039/c2cc31890c
Miao C, Li D, Zhang Y. AIE Luminogen Functionalized Mesoporous Silica Nanoparticles as Efficient Fluorescent Sensor for Explosives Detection in Water[J]. Micropor Mesopor Mater, 2014,196:46-50. doi: 10.1016/j.micromeso.2014.04.049
Bejoymohandas K S, George T M, Bhattacharya S. AIPE-Active Green Phosphorescent Iridium(Ⅲ) Complex Impregnated Test Strips for the Vapor-Phase Detection of 2,4,6-Trinitrotoluene(TNT)[J]. J Mater Chem C, 2014,2(3):515-523. doi: 10.1039/C3TC31941E
Tao S, Yin J, Li G. High-Performance TNT Chemosensory Materials Based on Nanocomposites with Bimodal Porous Structures[J]. J Mater Chem, 2008,18(40):4872-4878. doi: 10.1039/b802486c
Kim Y J, Seong D Y. Effect of Polymer Matrix on the Sensitivity of Microfibrous Fluorescent Chemosensor Containing Dendritic Porphyrin for the Detection of Dopamine[J]. J Mater Sci, 2013,48(9):3486-3493. doi: 10.1007/s10853-013-7139-6
Xing C, Guan J, Li Y. Effect of a Room-Temperature Ionic Liquid on the Structure and Properties of Electrospun Poly(vinylidene fluoride) Nanofibers[J]. ACS Appl Mater Interfaces, 2014,6(6):4447-4457. doi: 10.1021/am500061v
Jo S, Kim J, Noh J. Conjugated Polymer Dots-on-Electrospun Fibers as a Fluorescent Nanofibrous Sensor for Nerve Gas Stimulant[J]. ACS Appl Mater Interfaces, 2014,6(24):22884-22893. doi: 10.1021/am507206x
Lu P, Xia Y. Maneuvering the Internal Porosity and Surface Morphology of Electrospun Polystyrene Yarns by Controlling the Solvent and Relative Humidity[J]. Langmuir, 2013,29(23):7070-7078. doi: 10.1021/la400747y
Zhang Y, Kim J J, Chen D. Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases[J]. Adv Funct Mater, 2014,24(25):4005-4014. doi: 10.1002/adfm.v24.25
Wu J, Wang N, Zhao Y. Electrospinning of Multilevel Structured Functional Micro-/Nanofibers and Their Applications[J]. J Mater Chem A, 2013,1(25):7290-7305. doi: 10.1039/c3ta10451f
Lin M, Zou H Y, Yang T. An Inner Filter Effect Based Sensor of Tetracycline Hydrochloride as Developed by Loading Photoluminescent Carbon Nanodots in the Electrospun Nanofibers[J]. Nanoscale, 2016,8(5):2999-3007. doi: 10.1039/C5NR08177G
del Mercato L L, Moffa M, Rinaldi R. Ratiometric Organic Fibers for Localized and Reversible Ion Sensing with Micrometer-Scale Spatial Resolution[J]. Small, 2015,11(48):6417-6424. doi: 10.1002/smll.201502171
Hua K-Y, Deng C-M, He C. Organic Semiconductors-Coated Polyacrylonitrile(PAN) Electrospun Nanofibrous Mats for Highly Sensitive Chemosensors via Evanescent-Wave Guiding Effect[J]. Chinese Chem Lett, 2013,24(7):643-646. doi: 10.1016/j.cclet.2013.04.033
Li Z, Li H, Shi C. Naked-Eye-Based Highly Selective Sensing of Fe3+ and Further for PPI with Nano Copolymer Film[J]. Sens Actuators,B, 2016,226:127-134. doi: 10.1016/j.snb.2015.11.105
Lin H J, Chen C Y. Thermo-Responsive Electrospun Nanofibers Doped with 1,10-Phenanthroline-Based Fluorescent Sensor for Metal Ion Detection[J]. J Mater Sci, 2016,51(3):1620-1631. doi: 10.1007/s10853-015-9485-z
Raj S, Shankaran D R. Curcumin Based Biocompatible Nanofibers for Lead Ion Detection[J]. Sens Actuators,B, 2016,226:318-325. doi: 10.1016/j.snb.2015.12.006
Senthamizhan A, Balusamy B, Aytac Z. Ultrasensitive Electrospun Fluorescent Nanofibrous Membrane for Rapid Visual Colorimetric Detection of H2O2[J]. Anal Bioanal Chem, 2016,408(5):1347-1355. doi: 10.1007/s00216-015-9149-5
Long Y, Chen H, Yang Y. Electrospun Nanofibrous Film Doped with a Conjugated Polymer for DNT Fluorescence Sensor[J]. Macromolecules, 2009,42(17):6501-6509. doi: 10.1021/ma900756w
Long Y, Chen H, Wang H. Highly Sensitive Detection of Nitroaromatic Explosives Using an Electrospun Nanofibrous Sensor Based on a Novel Fluorescent Conjugated Polymer[J]. Anal Chim Acta, 2012,744:82-91. doi: 10.1016/j.aca.2012.07.028
Xue W, Zhang Y, Duan J. A Highly Sensitive Fluorescent Sensor Based on Small Molecules Doped in Electrospun Nanofibers:Detection of Explosives as Well as Color Modulation[J]. J Mater Chem C, 2015,3(31):8193-8199. doi: 10.1039/C5TC00819K
Wang Y, La A, Ding Y. Novel Signal-Amplifying Fluorescent Nanofibers for Naked-Eye-Based Ultrasensitive Detection of Buried Explosives and Explosive Vapors[J]. Adv Funct Mater, 2012,22(17):3547-3555. doi: 10.1002/adfm.v22.17
Sun X, Liu Y, Shaw G. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution[J]. ACS Appl Mater Interfaces, 2015,7(24):13189-13197. doi: 10.1021/acsami.5b03655
Tao S, Li G, Yin J. Fluorescent Nanofibrous Membranes for Trace Detection of TNT Vapor[J]. J Mater Chem, 2007,17(26):2730-2736. doi: 10.1039/b618122h
Yang Y, Wang H, Su K. A Facile and Sensitive Fluorescent Sensor Using Electrospun Nanofibrous Film for Nitroaromatic Explosive Detection[J]. J Mater Chem, 2011,21(32):11895-11900. doi: 10.1039/c0jm04444j
Lv Y Y, Xu W, Lin F W. Electrospun Nanofibers of Porphyrinated Polyimide for the Ultra-Sensitive Detection of Trace TNT[J]. Sens Actuators,B, 2013,184:205-211. doi: 10.1016/j.snb.2013.04.094
Ali M A, Chen S S Y, Cavaye H. Diffusion of Nitroaromatic Vapours into Fluorescent Dendrimer Films for Explosives Detection[J]. Sens Actuators,B, 2015,210:550-557. doi: 10.1016/j.snb.2014.12.084
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
Dongdong YANG , Jianhua XUE , Yuanyu YANG , Meixia WU , Yujia BAI , Zongxuan WANG , Qi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Tongyu Zheng , Teng Li , Xiaoyu Han , Yupei Chai , Kexin Zhao , Quan Liu , Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373