Citation: LIU Liping, YE Shanghui, HUANG Wei. Advances on Fluorescent Sensors for Detection of Explosives[J]. Chinese Journal of Applied Chemistry, ;2017, 34(1): 1-24. doi: 10.11944/j.issn.1000-0518.2017.01.160131 shu

Advances on Fluorescent Sensors for Detection of Explosives

  • Corresponding author: YE Shanghui, iamshye@njupt.edu.cn HUANG Wei, iamwhuang@njupt.edu.cn
  • Received Date: 30 March 2016
    Revised Date: 17 June 2016
    Accepted Date: 8 August 2016

    Fund Project: Natural Science Foundation of Education Department of Jiangsu Province No. 11KJB430010Supported by the National Natural Science Foundation of China No. 61106017Natural Science Foundation of Jiangsu Province No. BK20131375

Figures(21)

  • The detection of explosives is one of the urgent problems of the current international security concerns. In the past few decades, a large number of fluorescent sensing materials were developed for the detection of explosives in the gaseous state, liquid state or solid state through the fluorescence sensing method. In recent years, researchers have vigorously developed a variety of novel fluorescent materials to achieve fast, ultra-sensitive and ultra-selective detection of explosives. This review systematically summarizes recent advances in advanced fluorescent materials for the detection of explosives. Particalarly, conjugated polymers, small fluorophores, supramolecular systems, aggregation-induced emissive materials, and electrospun nanofibers from fluorescent nano-materials, are discussed. Fluorescence sensing methods are proved to be very promising in the field of explosive detection.
  • 加载中
    1. [1]

      Germain M E, Knapp M J. Optical Explosives Detection:From Color Changes to Fluorescence Turn-On[J]. Chem Soc Rev, 2009,38(9):2543-2555. doi: 10.1039/b809631g

    2. [2]

      Salinas Y, Martinez-Manez R, Marcos M D. Optical Chemosensors and Reagents to Detect Explosives[J]. Chem Soc Rev, 2012,41(3):1261-1296. doi: 10.1039/C1CS15173H

    3. [3]

      Senthamizhan A, Celebioglu A, Bayir S. Highly Fluorescent Pyrene-Functional Polystyrene Copolymer Nanofibers for Enhanced Sensing Performance of Tnt[J]. ACS Appl Mater Interfaces, 2015,7(38):21038-21046. doi: 10.1021/acsami.5b07184

    4. [4]

      Bhalla V, Kaur S, Vij V. Mercury-Modulated Supramolecular Assembly of a Hexaphenylbenzene Derivative for Selective Detection of Picric Acid[J]. Inorg Chem, 2013,52(9):4860-4865. doi: 10.1021/ic3023997

    5. [5]

      Zhang H Q, Euler W B. Detection of Gas-Phase Explosive Analytes Using Fluorescent Spectroscopy of Thin Films of Xanthene Dyes[J]. Sens Actuators,B, 2016,225:553-562. doi: 10.1016/j.snb.2015.11.098

    6. [6]

      Kartha K K, Babu S S, Srinivasan S. Attogram Sensing of Trinitrotoluene with a Self-Assembled Molecular Gelator[J]. J Am Chem Soc, 2012,134(10):4834-4841. doi: 10.1021/ja210728c

    7. [7]

      Liu X, Xu Y, Jiang D. Conjugated Microporous Polymers as Molecular Sensing Devices:Microporous Architecture Enables Rapid Response and Enhances Sensitivity in Fluorescence-On and Fluorescence-Off Sensing[J]. J Am Chem Soc, 2012,134(21):8738-8741. doi: 10.1021/ja303448r

    8. [8]

      Rochat S, Swager T M. Conjugated Amplifying Polymers for Optical Sensing Applications[J]. ACS Appl Mater Interfaces, 2013,5(11):4488-4502. doi: 10.1021/am400939w

    9. [9]

      Yang Jye-Shane S T M. Porous Shape Persistent Fluorescent Polymer Films:An Approach to TNT Sensory Material[J]. J Am Chem Soc, 1998,120(21):5321-5322. doi: 10.1021/ja9742996

    10. [10]

      Wang A, Cui Y, Tao F. Fluorescent Film Sensor for Nitroaromatics Prepared via Grafting a Conjugated Polymer on a Glass Slide Surface[J]. Russ J Phys Chem A, 2016,90(2):399-405. doi: 10.1134/S0036024415130026

    11. [11]

      Zhou L L, Li M, Lu H Y. Benzo[5] helicene-based Conjugated Polymers:Synthesis, Photophysical Properties, and Application for the Detection of Nitroaromatic Explosives[J]. Polym Chem, 2016,7(2):310-318. doi: 10.1039/C5PY01794G

    12. [12]

      Thomas S W, Ⅲ, Joly G D, Swager T M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers[J]. Chem Rev, 2007,107(4):1339-1386. doi: 10.1021/cr0501339

    13. [13]

      Sun X, Wang Y, Lei Y. Fluorescence Based Explosive Detection:From Mechanisms to Sensory Materials[J]. Chem Soc Rev, 2015,44(22):8019-8061. doi: 10.1039/C5CS00496A

    14. [14]

      Chang C P, Chao C Y, Huang J H. Fluorescent Conjugated Polymer Films as TNT Chemosensors[J]. Synth Met, 2004,144(3):297-301. doi: 10.1016/j.synthmet.2004.04.003

    15. [15]

      Chen L H, McBranch D, Wang R. Surfactant-Induced Modification of Quenching of Conjugated Polymer Fluorescence by Electron Acceptors:Applications for Chemical Sensing[J]. Chem Phys Lett, 2000,330(1/2):27-33.  

    16. [16]

      Duniho T L, Laughlin B J, Buelt A A. Conjugated Polymers for the Fluorescent Detection of Nitroaromatics:Influence of Side-Chain Sterics and Pi-System Electronics[J]. J Polym Sci,Part A:Polym Chem, 2014,52(10):1487-1492. doi: 10.1002/pola.v52.10

    17. [17]

      Gopalakrishnan D, Dichtel W R. Direct Detection of RDX Vapor Using a Conjugated Polymer Network[J]. J Am Chem Soc, 2013,135(22):8357-8362. doi: 10.1021/ja402668e

    18. [18]

      Feng L, Li H, Qu Y. Detection of TNT Based on Conjugated Polymer Encapsulated in Mesoporous Silica Nanoparticles Through FRET[J]. Chem Commun, 2012,48(38):4633-4635. doi: 10.1039/c2cc16115j

    19. [19]

      Zhang H, Feng L, Liu B. Conjugation of PPV Functionalized Mesoporous Silica Nanoparticles with Graphene Oxide for Facile and Sensitive Fluorescence Detection of TNT in Water Through FRET[J]. Dyes Pigm, 2014,101:122-129. doi: 10.1016/j.dyepig.2013.09.040

    20. [20]

      Cotts P M, Swager T M, Zhou Q. Equilibrium Flexibility of a Rigid Linear Conjugated Polymer[J]. Macromolecules, 1996,29(23):7323-7328. doi: 10.1021/ma9602583

    21. [21]

      Yang J S, Swager T M. Porous Shape Persistent Fluorescent Polymer Films:An Approach to TNT Sensory Materials[J]. J Am Chem Soc, 1998,120(21):5321-5322. doi: 10.1021/ja9742996

    22. [22]

      Zyryanov G V, Palacios M A, Anzenbacher P Jr. Simple Molecule-Based Fluorescent Sensors for Vapor Detection of TNT[J]. Org Lett, 2008,10(17):3681-3684. doi: 10.1021/ol801030u

    23. [23]

      Yamaguchi S, Swager T M. Oxidative Cyclization of Bis(Biaryl)Acetylenes:Synthesis and Photophysics of Dibenzo G,P Chrysene-Based Fluorescent Polymers[J]. J Am Chem Soc, 2001,123(48):12087-12088. doi: 10.1021/ja016692o

    24. [24]

      Zahn S, Swager T M. Three-Dimensional Electronic Delocalization in Chiral Conjugated Polymers[J]. Angew Chem Int Ed, 2002,41(22):4225-4230. doi: 10.1002/1521-3773(20021115)41:22<4225::AID-ANIE4225>3.0.CO;2-3

    25. [25]

      Cox J R, Mueller P, Swager T M. Interrupted Energy Transfer:Highly Selective Detection of Cyclic Ketones in the Vapor Phase[J]. J Am Chem Soc, 2011,133(33):12910-12913. doi: 10.1021/ja202277h

    26. [26]

      He G, Yan N, Yang J. Pyrene-Containing Conjugated Polymer-Based Fluorescent Films for Highly Sensitive and Selective Sensing of TNT in Aqueous Medium[J]. Macromolecules, 2011,44(12):4759-4766. doi: 10.1021/ma200953s

    27. [27]

      Sabatani E, Kalisky Y, Berman A. Photoluminescence of Polydiacetylene Membranes on Porous Silicon Utilized for Chemical Sensors[J]. Opt Mater, 2008,30(11):1766-1774. doi: 10.1016/j.optmat.2007.11.025

    28. [28]

      Lee W E, Oh C J, Kang I K. Diphenylacetylene Polymer Nanofiber Mats Fabricated by Freeze Drying:Preparation and Application for Explosive Sensors[J]. Macromol Chem Phys, 2010,211(17):1900-1908. doi: 10.1002/macp.201000216

    29. [29]

      Liang Z, Chen H, Wang X. F127/Conjugated Polymers Fluorescent Micelles for Trace Detection of Nitroaromatic Explosives[J]. Dyes Pigm, 2016,125:367-374. doi: 10.1016/j.dyepig.2015.10.045

    30. [30]

      Marks P, Cohen S, Levine M. Highly Efficient Quenching of Nanoparticles for the Detection of Electron-Deficient Nitroaromatics[J]. J Polym Sci,Part A:Polym Chem, 2013,51(19):4150-4155. doi: 10.1002/pola.26824

    31. [31]

      Xu B, Xu Y, Wang X. Porous Films Based on a Conjugated Polymer Gelator for Fluorescent Detection of Explosive Vapors[J]. Polym Chem, 2013,4(19):5056-5059. doi: 10.1039/c3py00806a

    32. [32]

      Venkatramaiah N, Kumar S, Patil S. Fluoranthene Based Fluorescent Chemosensors for Detection of Explosive Nitroaromatics[J]. Chem Commun, 2012,48(41):5007-5009. doi: 10.1039/c2cc31606d

    33. [33]

      Leng H, Wu W. Synthesis of a Novel Fluorene-Based Conjugated Polymer with Pendent Bulky Caged Adamantane Moieties and Its Application in the Detection of Trace DNT Explosives[J]. React Funct Polym, 2012,72(3):206-211. doi: 10.1016/j.reactfunctpolym.2012.01.002

    34. [34]

      Nie H, Zhao Y, Zhang M. Detection of TNT Explosives with a New Fluorescent Conjugated Polycarbazole Polymer[J]. Chem Commun, 2011,47(4):1234-1236. doi: 10.1039/C0CC03659E

    35. [35]

      Wang D H, Cui Y Z, Tao F R. A Novel Film of Conjugated Polymer Grafted onto Gelatin for Detecting Nitroaromatics Vapor with Excellent Inhibiting Photobleaching[J]. Sens Actuators,B, 2016,225:319-326. doi: 10.1016/j.snb.2015.11.038

    36. [36]

      Kim H N, Guo Z, Zhu W. Recent Progress on Polymer-Based Fluorescent and Colorimetric Chemosensors[J]. Chem Soc Rev, 2011,40(1):79-93. doi: 10.1039/C0CS00058B

    37. [37]

      Nagarjuna G, Kumar A, Kokil A. Enhancing Sensing of Nitroaromatic Vapours by Thiophene-Based Polymer Films[J]. J Mater Chem, 2011,21(41):16597-16602. doi: 10.1039/c1jm12949j

    38. [38]

      Balan B, Vijayakumar C, Tsuji M. Detection and Distinction of DNT and TNT with a Fluorescent Conjugated Polymer Using the Microwave Conductivity Technique[J]. J Phys Chem B, 2012,116(34):10371-10378. doi: 10.1021/jp304791r

    39. [39]

      Chen S, Zhang Q, Zhang J. Synthesis of Two Conjugated Polymers as TNT Chemosensor Materials[J]. Sens Actuators,B, 2010,149(1):155-160. doi: 10.1016/j.snb.2010.06.007

    40. [40]

      Zarei A R, Ghazanchayi B. Design and Fabrication of Optical Chemical Sensor for Detection of Nitroaromatic Explosives Based on Fluorescence Quenching of Phenol Red Immobilized Polyvinyl Alcohol) Membrane[J]. Talanta, 2016,150:162-168. doi: 10.1016/j.talanta.2015.12.014

    41. [41]

      Saxena A, Fujiki M, Rai R. Fluoroalkylated Polysilane Film as a Chemosensor for Explosive Nitroaromatic Compounds[J]. Chem Mater, 2005,17(8):2181-2185. doi: 10.1021/cm048319w

    42. [42]

      Hussain S, Malik A H, Afroz M A. Ultrasensitive Detection of Nitroexplosive - Picric Acid Via a Conjugated Polyelectrolyte in Aqueous Media and Solid Support[J]. Chem Commun, 2015,51(33):7207-7210. doi: 10.1039/C5CC02194D

    43. [43]

      Malik A H, Hussain S, Kalita A. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-Explosive Picric Acid on Multiple Platforms[J]. ACS Appl Mater Interfaces, 2015,7(48):26968-26976. doi: 10.1021/acsami.5b08068

    44. [44]

      Rahman M, Harmon H J. Absorbance Change and Static Quenching of Fluorescence of Meso-Tetra(4-Sulfonatophenyl)Porphyrin(TPPS) by Trinitrotoluene(TNT)[J]. Spectrochim Acta,Part A, 2006,65(3-4):901-906. doi: 10.1016/j.saa.2006.01.029

    45. [45]

      Hikal W M, Harmon H J. Early Events in 2,4,6-Trinitrotoluene(TNT) Degradation by Porphyrins:Binding of TNT to Porphyrin by Hydrophobic and Hydrogen Bonds[J]. J Hazard Mater, 2008,154(1-3):826-831. doi: 10.1016/j.jhazmat.2007.10.098

    46. [46]

      Venkatramaiah N, Pereira C F, Mendes R F. Phosphonate Appended Porphyrins as Versatile Chemosensors for Selective Detection of Trinitrotoluene[J]. Anal Chem, 2015,87(8):4515-4522. doi: 10.1021/acs.analchem.5b00772

    47. [47]

      Swamy C A P, Thilagar P. Polyfunctional Lewis Acids:Intriguing Solid-State Structure and Selective Detection and Discrimination of Nitroaromatic Explosives[J]. Chem Eur J, 2015,21(24):8874-8882. doi: 10.1002/chem.201500727

    48. [48]

      Lee Y H, Liu H, Lee J Y. Dipyrenylcalix[4] arene-A Fluorescence-Based Chemosensor for Trinitroaromatic Explosives[J]. Chem Eur J, 2010,16(20):5895-5901. doi: 10.1002/chem.200903439

    49. [49]

      Kim S B, Lee E B, Choi J H. Simple Fluorescent Chemosensors for TNT:One-Step Synthesis[J]. Tetrahedron, 2013,69(23):4652-4656. doi: 10.1016/j.tet.2013.03.108

    50. [50]

      Singla P, Kaur P, Singh K. Discrimination in Excimer Emission Quenching of Pyrene by Nitroaromatics[J]. Tetrahedron Lett, 2015,56(18):2311-2314. doi: 10.1016/j.tetlet.2015.03.053

    51. [51]

      Chen W, Zuckerman N B, Konopelski J P. Pyrene-Functionalized Ruthenium Nanoparticles as Effective Chemosensors for Nitroaromatic Derivatives[J]. Anal Chem, 2010,82(2):461-465. doi: 10.1021/ac902394s

    52. [52]

      Venkatramaiah N, Firmino A D G, Paz F A A. Fast Detection of Nitroaromatics Using Phosphonate Pyrene Motifs as Dual Chemosensors[J]. Chem Commun, 2014,50(68):9683-9686. doi: 10.1039/C4CC03980G

    53. [53]

      Vijayakumar C, Tobin G, Schmitt W. Detection of Explosive Vapors with a Charge Transfer Molecule:Self-Assembly Assisted Morphology Tuning and Enhancement in Sensing Efficiency[J]. Chem Commun, 2010,46(6):874-876. doi: 10.1039/b921520d

    54. [54]

      Roy B, Bar A K, Gole B. Fluorescent Tris-Imidazolium Sensors for Picric Acid Explosive[J]. J Org Chem, 2013,78(3):1306-1310. doi: 10.1021/jo302585a

    55. [55]

      Niamnont N, Kimpitak N, Wongravee K. Tunable Star-Shaped Triphenylamine Fluorophores for Fluorescence Quenching Detection and Identification of Nitro-Aromatic Explosives[J]. Chem Commun, 2013,49(8):780-782. doi: 10.1039/C2CC34008A

    56. [56]

      Pramanik S, Bhalla V, Kumar M. Hexaphenylbenzene-Based Fluorescent Aggregates for Ratiometric Detection of Cyanide Ions at Nanomolar Level:Set-Reset Memorized Sequential Logic Device[J]. ACS Appl Mater Interfaces, 2014,6(8):5930-5939. doi: 10.1021/am500903d

    57. [57]

      Meaney M S, McGuffin V L. Investigation of Common Fluorophores for the Detection of Nitrated Explosives by Fluorescence Quenching[J]. Anal Chim Acta, 2008,610(1):57-67. doi: 10.1016/j.aca.2008.01.016

    58. [58]

      Peveler W J, Roldan A, Hollingsworth N. Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array[J]. ACS Nano, 2016,10(1):1139-1146. doi: 10.1021/acsnano.5b06433

    59. [59]

      An N, Gonzalez C M, Sinelnikov R. Detection of Nitroaromatics in the Solid, Solution, and Vapor Phases Using Silicon Quantum Dot Sensors[J]. Nanotechnology, 2016,27(10)105501. doi: 10.1088/0957-4484/27/10/105501

    60. [60]

      Yi K Y. Application of Cdse Quantum Dots for the Direct Detection of Tnt[J]. Forensic Sci Int, 2016,259:101-105. doi: 10.1016/j.forsciint.2015.12.028

    61. [61]

      Chen Y, Chen Z, He Y. L-Cysteine-Capped CdTe QD-Based Sensor for Simple and Selective Detection of Trinitrotoluene[J]. Nanotechnology, 2010,21(12)125502. doi: 10.1088/0957-4484/21/12/125502

    62. [62]

      Zhang K, Zhou H, Mei Q. Instant Visual Detection of Trinitrotoluene Particulates on Various Surfaces by Ratiometric Fluorescence of Dual-Emission Quantum Dots Hybrid[J]. J Am Chem Soc, 2011,133(22):8424-8427. doi: 10.1021/ja2015873

    63. [63]

      Zhang K, Yang L, Zhu H. Selective Visual Detection of Trace Trinitrotoluene Residues Based on Dual-Color Fluorescence of Graphene Oxide-Nanocrystals Hybrid Probe[J]. Analyst, 2014,139(10):2379-2385. doi: 10.1039/c3an02380j

    64. [64]

      Fan L, Hu Y, Wang X. Fluorescence Resonance Energy Transfer Quenching at the Surface of Graphene Quantum Dots for Ultrasensitive Detection of Tnt[J]. Talanta, 2012,101:192-197. doi: 10.1016/j.talanta.2012.08.048

    65. [65]

      Liu S, Shi F, Chen L. Bovine Serum Albumin Coated CuInS2 Quantum Dots as a Near-Infrared Fluorescence Probe for 2,4,6-Trinitrophenol Detection[J]. Talanta, 2013,116:870-875. doi: 10.1016/j.talanta.2013.07.073

    66. [66]

      Niu Q, Gao K, Lin Z. Amine-Capped Carbon Dots as a Nanosensor for Sensitive and Selective Detection of Picric Acid in Aqueous Solution Via Electrostatic Interaction[J]. Anal Methods, 2013,5(21):6228-6233. doi: 10.1039/c3ay41275j

    67. [67]

      Chen H Y, Ruan L W, Jiang X. Trace Detection of Nitro Aromatic Explosives by Highly Fluorescent g-C3N4 Nanosheets[J]. Analyst, 2015,140(2):637-643. doi: 10.1039/C4AN01693A

    68. [68]

      Liao Y Z, Strong V, Wang Y. Oligotriphenylene Nanofiber Sensors for Detection of Nitro-Based Explosives[J]. Adv Funct Mater, 2012,22(4):726-735. doi: 10.1002/adfm.201102013

    69. [69]

      Li X G, Liao Y Z, Huang M R. Ultra-Sensitive Chemosensors for Fe(Ⅲ) and Explosives Based on Highly Fluorescent Oligofluoranthene[J]. Chem Sci, 2013,4(5):1970-1978. doi: 10.1039/c3sc22107e

    70. [70]

      Ding L, Fang Y. Chemically Assembled Monolayers of Fluorophores as Chemical Sensing Materials[J]. Chem Soc Rev, 2010,39(11):4258-4273. doi: 10.1039/c003028g

    71. [71]

      Du H, He G, Liu T. Preparation of Pyrene-Functionalized Fluorescent Film with a Benzene Ring in Spacer and Sensitive Detection to Picric Acid in Aqueous Phase[J]. J Photochem Photobiol,A, 2011,217(2-3):356-362. doi: 10.1016/j.jphotochem.2010.11.004

    72. [72]

      Ding L, Liu Y, Cao Y. A Single Fluorescent Self-Assembled Monolayer Film Sensor with Discriminatory Power[J]. J Mater Chem, 2012,22(23):11574-11582. doi: 10.1039/c2jm30697b

    73. [73]

      Ma Y, Li H, Peng S. Highly Selective and Sensitive Fluorescent Paper Sensor for Nitroaromatic Explosive Detection[J]. Anal Chem, 2012,84(19):8415-8421. doi: 10.1021/ac302138c

    74. [74]

      Feng L, Wang C, Ma Z. 8-Hydroxyquinoline Functionalized ZnS Nanoparticles Capped with Amine Groups:A Fluorescent Nanosensor for the Facile and Sensitive Detection of Tnt through Fluorescence Resonance Energy Transfer[J]. Dyes Pigm, 2013,97(1):84-91. doi: 10.1016/j.dyepig.2012.11.023

    75. [75]

      Zou W S, Wang Y Q, Wang F. Selective Fluorescence Response and Magnetic Separation Probe for 2,4,6-Trinitrotoluene Based on Iron Oxide Magnetic Nanoparticles[J]. Anal Bioanal Chem, 2013,405(14):4905-4912. doi: 10.1007/s00216-013-6873-6

    76. [76]

      Xu Y, Li B, Li W. “ICT-Not-Quenching” Near Infrared Ratiometric Fluorescent Detection of Picric Acid in Aqueous Media[J]. Chem Commun, 2013,49(42):4764-4766. doi: 10.1039/c3cc41994k

    77. [77]

      Sivaraman G, Vidya B, Chellappa D. Rhodamine Based Selective Turn-on Sensing of Picric Acid[J]. RSC Adv, 2014,4(58):30828-30831. doi: 10.1039/C4RA02931C

    78. [78]

      Madhu S, Bandela A, Ravikanth M. Bodipy Based Fluorescent Chemodosimeter for Explosive Picric Acid in Aqueous Media and Rapid Detection in the Solid State[J]. RSC Adv, 2014,4(14):7120-7123. doi: 10.1039/c3ra46565a

    79. [79]

      Gole B, Shanmugaraju S, Bar A K. Supramolecular Polymer for Explosives Sensing:Role of H-Bonding in Enhancement of Sensitivity in the Solid State[J]. Chem Commun, 2011,47(36):10046-10048. doi: 10.1039/c1cc13925h

    80. [80]

      Shanmugaraju S, Jadhav H, Karthik R. Electron Rich Supramolecular Polymers as Fluorescent Sensors for Nitroaromatics[J]. RSC Adv, 2013,3(15):4940-4950. doi: 10.1039/c3ra23269g

    81. [81]

      Gole B, Song W, Lackinger M. Explosives Sensing by Using Electron-Rich Supramolecular Polymers:Role of Intermolecular Hydrogen Bonding in Significant Enhancement of Sensitivity[J]. Chem Eur J, 2014,20(42):13662-13680. doi: 10.1002/chem.v20.42

    82. [82]

      Bahring S, Martin-Gomis L, Olsen G. Design and Sensing Properties of a Self-Assembled Supramolecular Oligomer[J]. Chem Eur J, 2016,22(6):1958-1967. doi: 10.1002/chem.201503701

    83. [83]

      Ponnu A, Anslyn E V. A Fluorescence-Based Cyclodextrin Sensor to Detect Nitroaromatic Explosives[J]. Supramol Chem, 2010,22(1):65-71. doi: 10.1080/10610270903378032

    84. [84]

      Feng L, Tong C, He Y. A Novel Fret-Based Fluorescent Chemosensor of Beta-Cyclodextrin Derivative for TNT Detection in Aqueous Solution[J]. J Lumin, 2014,146:502-507. doi: 10.1016/j.jlumin.2013.10.039

    85. [85]

      Algarra M, Campos B B, Miranda M S. CdSe Quantum Dots Capped PAMAM Dendrimer Nanocomposites for Sensing Nitroaromatic Compounds[J]. Talanta, 2011,83(5):1335-1340. doi: 10.1016/j.talanta.2010.10.056

    86. [86]

      Hu Z, Deibert B J, Li J. Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection[J]. Chem Soc Rev, 2014,43(16):5815-5840. doi: 10.1039/C4CS00010B

    87. [87]

      Zhang M, Zhang L, Xiao Z. Pentiptycene-Based Luminescent Cu(Ⅱ) MOF Exhibiting Selective Gas Adsorption and Unprecedentedly High-Sensitivity Detection of Nitroaromatic Compounds(Nacs)[J]. Sci Rep, 2016,620672. doi: 10.1038/srep20672

    88. [88]

      Nagarkar S S, Joarder B, Chaudhari A K. Highly Selective Detection of Nitro Explosives by a Luminescent Metal-Organic Framework[J]. Angew Chem Int Ed, 2013,52(10):2881-2885. doi: 10.1002/anie.201208885

    89. [89]

      Nagarkar S S, Desai A V, Ghosh S K. A Fluorescent Metal-Organic Framework for Highly Selective Detection of Nitro Explosives in the Aqueous Phase[J]. Chem Commun, 2014,50(64):8915-8918. doi: 10.1039/C4CC03053B

    90. [90]

      Chaudhari A K, Nagarkar S S, Joarder B. A Continuous Pi-Stacked Starfish Array of Two-Dimensional Luminescent Mof for Detection of Nitro Explosives[J]. Cryst Growth Des, 2013,13(8):3716-3721. doi: 10.1021/cg400749m

    91. [91]

      Dalapati S, Jin S, Gao J. An Azine-Linked Covalent Organic Framework[J]. J Am Chem Soc, 2013,135(46):17310-17313. doi: 10.1021/ja4103293

    92. [92]

      Liu J, Yang S, Li F. Highly Fluorescent Polymeric Nanoparticles Based on Melamine for Facile Detection of TNT in Soil[J]. J Mater Chem A, 2015,3(18):10069-10076. doi: 10.1039/C5TA00185D

    93. [93]

      Wang H, Liang Y, Xie H. Unexpected SiMe3 Effect on Color-Tunable and Fluorescent Probes of Dendritic Polyphenyl Naphthalimides with Aggregation-Induced Emission Enhancement[J]. J Mater Chem C, 2016,4(4):745-750. doi: 10.1039/C5TC03344F

    94. [94]

      Zhao Z, Jiang T, Guo Y. Silole-Containing Poly(Silylenevinylene)S:Synthesis, Characterization, Aggregation-Enhanced Emission, and Explosive Detection[J]. J Polym Sci,Part A:Polym Chem, 2012,50(11):2265-2274. doi: 10.1002/pola.v50.11

    95. [95]

      Li J, Liu J, Lam J W Y. Poly(Arylene Ynonylene) with an Aggregation-Enhanced Emission Characteristic:A Fluorescent Sensor for Both Hydrazine and Explosive Detection[J]. RSC Adv, 2013,3(22):8193-8196. doi: 10.1039/c3ra40867a

    96. [96]

      Hu R, Leung N L C, Tang B Z. AIE Macromolecules:Syntheses, Structures and Functionalities[J]. Chem Soc Rev, 2014,43(13):4494-4562. doi: 10.1039/c4cs00044g

    97. [97]

      Qin A, Tang L, Lam J W Y. Metal-Free Click Polymerization:Synthesis and Photonic Properties of Poly(Aroyltriazole)s[J]. Adv Funct Mater, 2009,19(12):1891-1900. doi: 10.1002/adfm.v19:12

    98. [98]

      Lu P, Lam J W Y, Liu J. Aggregation-Induced Emission in a Hyperbranched Poly(Silylenevinylene) and Superamplification in Its Emission Quenching by Explosives[J]. Macromol Rapid Commun, 2010,31(9/10):834-839.  

    99. [99]

      Hu R, Lam J W Y, Liu J. Hyperbranched Conjugated Poly(Tetraphenylethene):Synthesis, Aggregation-Induced Emission, Fluorescent Photopatterning, Optical Limiting and Explosive Detection[J]. Polym Chem, 2012,3(6):1481-1489. doi: 10.1039/c2py20057k

    100. [100]

      Li H, Wu H, Zhao E. Hyperbranched Poly(Aroxycarbonyltriazole)s:Metal-Free Click Polymerization, Light Refraction, Aggregation-Induced Emission, Explosive Detection, and Fluorescent Patterning[J]. Macromolecules, 2013,46(10):3907-3914. doi: 10.1021/ma400609m

    101. [101]

      Hu R, Luis Maldonado J, Rodriguez M. Luminogenic Materials Constructed from Tetraphenylethene Building Blocks:Synthesis, Aggregation-Induced Emission, Two-Photon Absorption, Light Refraction, and Explosive Detection[J]. J Mater Chem, 2012,22(1):232-240. doi: 10.1039/C1JM13556B

    102. [102]

      Zhou H, Li J, Chua M H. Poly(Acrylate) with a Tetraphenylethene Pendant with Aggregation-Induced Emission(AIE) Characteristics:Highly Stable AIE-Active Polymer Nanoparticles for Effective Detection of Nitro Compounds[J]. Polym Chem, 2014,5(19):5628-5637. doi: 10.1039/C4PY00518J

    103. [103]

      Liu J, Zhong Y, Lu P. A Superamplification Effect in the Detection of Explosives by a Fluorescent Hyperbranched Poly(Silylenephenylene) with Aggregation-Enhanced Emission Characteristics[J]. Polym Chem, 2010,1(4):426-429. doi: 10.1039/c0py00046a

    104. [104]

      Zhou H, Ye Q, Neo W T. Electrospun Aggregation-Induced Emission Active Poss-Based Porous Copolymer Films for Detection of Explosives[J]. Chem Commun, 2014,50(89):13785-13788. doi: 10.1039/C4CC06559J

    105. [105]

      Dong W, Pan Y, Fritsch M. High Sensitivity Sensing of Nitroaromatic Explosive Vapors Based on Polytriphenylamines with AIE-Active Tetraphenylethylene Side Groups[J]. J Polym Sci,Part A:Polym Chem, 2015,53(15):1753-1761. doi: 10.1002/pola.27631

    106. [106]

      Kaur S, Gupta A, Bhalla V. Pentacenequinone Derivatives:Aggregation-Induced Emission Enhancement, Mechanism and Fluorescent Aggregates for Superamplified Detection of Nitroaromatic Explosives[J]. J Mater Chem C, 2014,2(35):7356-7363. doi: 10.1039/C4TC01194E

    107. [107]

      Xu B, Wu X, Li H. Selective Detection of TNT and Picric Acid by Conjugated Polymer Film Sensors with Donor-Acceptor Architecture[J]. Macromolecules, 2011,44(13):5089-5092. doi: 10.1021/ma201003f

    108. [108]

      Feng H T, Wang J H, Zheng Y S. CH3-π Interaction of Explosives with Cavity of a TPE Macrocycle:The Key Cause for Highly Selective Detection of TNT[J]. ACS Appl Mater Interfaces, 2014,6(22):20067-20074. doi: 10.1021/am505636f

    109. [109]

      Vij V, Bhalla V, Kumar M. Attogram Detection of Picric Acid by Hexa-Peri-Hexabenzocoronene-Based Chemosensors by Controlled Aggregation-Induced Emission Enhancement[J]. ACS Appl Mater Interfaces, 2013,5(11):5373-5380. doi: 10.1021/am401414g

    110. [110]

      Pramanik S, Bhalla V, Kumar M. Mercury Assisted Fluorescent Supramolecular Assembly of Hexaphenylbenzene Derivative for Femtogram Detection of Picric Acid[J]. Anal Chim Acta, 2013,793:99-106. doi: 10.1016/j.aca.2013.07.023

    111. [111]

      Li D, Liu J, Kwok R T K. Supersensitive Detection of Explosives by Recyclable AIE Luminogen-Functionalized Mesoporous Materials[J]. Chem Commun, 2012,48(57):7167-7169. doi: 10.1039/c2cc31890c

    112. [112]

      Miao C, Li D, Zhang Y. AIE Luminogen Functionalized Mesoporous Silica Nanoparticles as Efficient Fluorescent Sensor for Explosives Detection in Water[J]. Micropor Mesopor Mater, 2014,196:46-50. doi: 10.1016/j.micromeso.2014.04.049

    113. [113]

      Bejoymohandas K S, George T M, Bhattacharya S. AIPE-Active Green Phosphorescent Iridium(Ⅲ) Complex Impregnated Test Strips for the Vapor-Phase Detection of 2,4,6-Trinitrotoluene(TNT)[J]. J Mater Chem C, 2014,2(3):515-523. doi: 10.1039/C3TC31941E

    114. [114]

      Tao S, Yin J, Li G. High-Performance TNT Chemosensory Materials Based on Nanocomposites with Bimodal Porous Structures[J]. J Mater Chem, 2008,18(40):4872-4878. doi: 10.1039/b802486c

    115. [115]

      Kim Y J, Seong D Y. Effect of Polymer Matrix on the Sensitivity of Microfibrous Fluorescent Chemosensor Containing Dendritic Porphyrin for the Detection of Dopamine[J]. J Mater Sci, 2013,48(9):3486-3493. doi: 10.1007/s10853-013-7139-6

    116. [116]

      Xing C, Guan J, Li Y. Effect of a Room-Temperature Ionic Liquid on the Structure and Properties of Electrospun Poly(vinylidene fluoride) Nanofibers[J]. ACS Appl Mater Interfaces, 2014,6(6):4447-4457. doi: 10.1021/am500061v

    117. [117]

      Jo S, Kim J, Noh J. Conjugated Polymer Dots-on-Electrospun Fibers as a Fluorescent Nanofibrous Sensor for Nerve Gas Stimulant[J]. ACS Appl Mater Interfaces, 2014,6(24):22884-22893. doi: 10.1021/am507206x

    118. [118]

      Lu P, Xia Y. Maneuvering the Internal Porosity and Surface Morphology of Electrospun Polystyrene Yarns by Controlling the Solvent and Relative Humidity[J]. Langmuir, 2013,29(23):7070-7078. doi: 10.1021/la400747y

    119. [119]

      Zhang Y, Kim J J, Chen D. Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases[J]. Adv Funct Mater, 2014,24(25):4005-4014. doi: 10.1002/adfm.v24.25

    120. [120]

      Wu J, Wang N, Zhao Y. Electrospinning of Multilevel Structured Functional Micro-/Nanofibers and Their Applications[J]. J Mater Chem A, 2013,1(25):7290-7305. doi: 10.1039/c3ta10451f

    121. [121]

      Lin M, Zou H Y, Yang T. An Inner Filter Effect Based Sensor of Tetracycline Hydrochloride as Developed by Loading Photoluminescent Carbon Nanodots in the Electrospun Nanofibers[J]. Nanoscale, 2016,8(5):2999-3007. doi: 10.1039/C5NR08177G

    122. [122]

      del Mercato L L, Moffa M, Rinaldi R. Ratiometric Organic Fibers for Localized and Reversible Ion Sensing with Micrometer-Scale Spatial Resolution[J]. Small, 2015,11(48):6417-6424. doi: 10.1002/smll.201502171

    123. [123]

      Hua K-Y, Deng C-M, He C. Organic Semiconductors-Coated Polyacrylonitrile(PAN) Electrospun Nanofibrous Mats for Highly Sensitive Chemosensors via Evanescent-Wave Guiding Effect[J]. Chinese Chem Lett, 2013,24(7):643-646. doi: 10.1016/j.cclet.2013.04.033

    124. [124]

      Li Z, Li H, Shi C. Naked-Eye-Based Highly Selective Sensing of Fe3+ and Further for PPI with Nano Copolymer Film[J]. Sens Actuators,B, 2016,226:127-134. doi: 10.1016/j.snb.2015.11.105

    125. [125]

      Lin H J, Chen C Y. Thermo-Responsive Electrospun Nanofibers Doped with 1,10-Phenanthroline-Based Fluorescent Sensor for Metal Ion Detection[J]. J Mater Sci, 2016,51(3):1620-1631. doi: 10.1007/s10853-015-9485-z

    126. [126]

      Raj S, Shankaran D R. Curcumin Based Biocompatible Nanofibers for Lead Ion Detection[J]. Sens Actuators,B, 2016,226:318-325. doi: 10.1016/j.snb.2015.12.006

    127. [127]

      Senthamizhan A, Balusamy B, Aytac Z. Ultrasensitive Electrospun Fluorescent Nanofibrous Membrane for Rapid Visual Colorimetric Detection of H2O2[J]. Anal Bioanal Chem, 2016,408(5):1347-1355. doi: 10.1007/s00216-015-9149-5

    128. [128]

      Long Y, Chen H, Yang Y. Electrospun Nanofibrous Film Doped with a Conjugated Polymer for DNT Fluorescence Sensor[J]. Macromolecules, 2009,42(17):6501-6509. doi: 10.1021/ma900756w

    129. [129]

      Long Y, Chen H, Wang H. Highly Sensitive Detection of Nitroaromatic Explosives Using an Electrospun Nanofibrous Sensor Based on a Novel Fluorescent Conjugated Polymer[J]. Anal Chim Acta, 2012,744:82-91. doi: 10.1016/j.aca.2012.07.028

    130. [130]

      Xue W, Zhang Y, Duan J. A Highly Sensitive Fluorescent Sensor Based on Small Molecules Doped in Electrospun Nanofibers:Detection of Explosives as Well as Color Modulation[J]. J Mater Chem C, 2015,3(31):8193-8199. doi: 10.1039/C5TC00819K

    131. [131]

      Wang Y, La A, Ding Y. Novel Signal-Amplifying Fluorescent Nanofibers for Naked-Eye-Based Ultrasensitive Detection of Buried Explosives and Explosive Vapors[J]. Adv Funct Mater, 2012,22(17):3547-3555. doi: 10.1002/adfm.v22.17

    132. [132]

      Sun X, Liu Y, Shaw G. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution[J]. ACS Appl Mater Interfaces, 2015,7(24):13189-13197. doi: 10.1021/acsami.5b03655

    133. [133]

      Tao S, Li G, Yin J. Fluorescent Nanofibrous Membranes for Trace Detection of TNT Vapor[J]. J Mater Chem, 2007,17(26):2730-2736. doi: 10.1039/b618122h

    134. [134]

      Yang Y, Wang H, Su K. A Facile and Sensitive Fluorescent Sensor Using Electrospun Nanofibrous Film for Nitroaromatic Explosive Detection[J]. J Mater Chem, 2011,21(32):11895-11900. doi: 10.1039/c0jm04444j

    135. [135]

      Lv Y Y, Xu W, Lin F W. Electrospun Nanofibers of Porphyrinated Polyimide for the Ultra-Sensitive Detection of Trace TNT[J]. Sens Actuators,B, 2013,184:205-211. doi: 10.1016/j.snb.2013.04.094

    136. [136]

      Ali M A, Chen S S Y, Cavaye H. Diffusion of Nitroaromatic Vapours into Fluorescent Dendrimer Films for Explosives Detection[J]. Sens Actuators,B, 2015,210:550-557. doi: 10.1016/j.snb.2014.12.084

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    5. [5]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    6. [6]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    7. [7]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    13. [13]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(5)
  • Abstract views(406)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return