Citation: LI Liangui, FU Zhipeng, LI Mingchao, ZHANG Qiang, WANG Rui, WANG Guoqiang, JIANG Min. Synthesis and Characterization of Polyethylene Terephthalate-b-poly(ethylene 2,5-furandicarboxylate) Block Polyester[J]. Chinese Journal of Applied Chemistry, ;2017, 34(1): 54-59. doi: 10.11944/j.issn.1000-0518.2017.01.160093 shu

Synthesis and Characterization of Polyethylene Terephthalate-b-poly(ethylene 2,5-furandicarboxylate) Block Polyester

  • Corresponding author: JIANG Min, jiangmin@ciac.ac.cn
  • Received Date: 7 March 2016
    Revised Date: 5 May 2016
    Accepted Date: 8 June 2016

    Fund Project: Suported by the National Natural Science Foundation of China No. 51103152

Figures(5)

  • Poly(ethylene 2,5-furandicarboxylate)(PEF) was synthesized based on 2,5-furanicarboxylica acid and ethylene glycol. Polyethylene terephthalate-b-poly(ethylene 2,5-furandicarboxylate)(PET-b-PEF) block copolymers were prepared by melt transesterification method. PET was partly replaced by PEF polyester. The properties of PET-b-PEF block copolymers were characterized by nuclear magnetic resonance spectormeter(NMR), differential scanning calorimeter(DSC), thermo gravimetric analysis(TGA) and X-ray diffraction(XRD). The results show that the glass transition temperature(Tg) of copolyesters is about 75.8~80.3℃. The Tg of the PET-b-PEF block copolyesters first decreases and then increases; the crystallinity and the melting temperature decrease with the increasing contents of PEF segments, moreover, there is no crystalline diffraction peaks for the copolyesters when the chain segment content of PEF is higher than 15%. The initial decomposition temperature of this series of copolyesters is about 392.2~407.9℃. PEF has excellent thermal properties similar to that of PET(403.3℃). In addition, the thermal stability of the copolyesters is better than that of PET, when the chain segment contents of PEF in the coplyester is less than 15%, and the initial decomposition temperature of PET-b-PEF block copolymers is close to that of PET.
  • 加载中
    1. [1]

      Williams C K, Hillmyer M A. Polymers from Renewable Resources:A Perspective for a Special Issue of Polymer Rviews[J]. Polym Rev, 2008,48(1):1-10. doi: 10.1080/15583720701834133

    2. [2]

      Nikolau B J, Perera M A D N, Brachova L. Platform Biochemicals for a Biorenewable Chemical Industry[J]. Plant J, 2008,54(1):536-545.  

    3. [3]

      Belgacem M N,Gandini A. Monomers Polymers and Composites from Renewable Resources[M]. Amsterdam:Elsevier Science,2008:3-15.

    4. [4]

      Bozell J J, Patel M K. Feedstocks for the Future-biorefinery Production of Chemicals from Renewable Carbon[J]. Clean-Soil Air Water, 2008,36(8):641-647. doi: 10.1002/clen.v36:8

    5. [5]

      Taarning E, Nielsen I S, Egelblad K. Chemicals from Renewables:Aerobic Oxidation of Furfural and Hydroxymethylfurfural over Gold Catalysts[J]. Chem Sus Chem, 2008,1(1/2):75-78.  

    6. [6]

      Zhao H, Holladay J E, Brown H. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural[J]. Science, 2007,316(5831):1597-1600. doi: 10.1126/science.1141199

    7. [7]

      LU Yan, WU Siyu, MA Baiqing. Synthesis and Properties of Polyesters Containing Schiff Base Side Groups and Their Zinc Complexes[J]. Chinese J Appl Chem, 2016,33(4):452-458.  

    8. [8]

      Silvia B R, Cristina T, Judit M J. Effect of Thermal, Acid, Alkaline and Alkaline-Peroxide Pretreatments on the Biochemical Methane Potential and Kinetics of the Anaerobic Digestion of Wheat Straw and Sugarcane Bagasse[J]. Bioresour Technol, 2016,201:182-190. doi: 10.1016/j.biortech.2015.11.047

    9. [9]

      Gandini A, Silvester A J D, Neto C P. The Furan Counterpart of Poly(ethylene terephthalate):An Alternative Material Based on Renewable Resources[J]. J Polym Sci Part A:Polym Chem, 2009,47(1):295-298. doi: 10.1002/pola.v47:1

    10. [10]

      Vilela C, Sousa A F, Fonseca A C. The Quest for Sustainable Polyesters-insights into the Future[J]. Polym Chem, 2014,5(9):3119-3141. doi: 10.1039/C3PY01213A

    11. [11]

      Jiang M, Liu Q, Zhang Q. A Series of Furan-aromatic Polyesters Synthesized via Direct Esterification Method Based on Renewable Resources[J]. J Polym Sci Part A:Polym Chem, 2012,50(5):1026-1036. doi: 10.1002/pola.v50.5

    12. [12]

      Jiang Min, Liu Qian, Zhang Qiang. Synthesis and Characteration of Poly(ethylene 2,5-furandicarboxylate)[J]. Acta Polym Sin, 2013(1):24-29.

    13. [13]

      Jiang Min, LU Tingting, JIANG Guowei. Synthesis and Characteration of Poly(ethylene terephthalate-co-ethylene 2,5-furandicarboxylate)[J]. Acta Polym Sin, 2013(8):1092-1098.

    14. [14]

      CHEN Ying, JIANG Min, SUN Changjiang. Preparation and Characterization of Poly(ethylene 2,5-furandicarboxylate)/Poly(butylene succinate) Blends[J]. Chinese J Appl Chem, 2015,32(9):1022-1027.  

    15. [15]

      LIU Qian, JIANG Min, ZHOU Guangyuan. Synthesis of Poly(ethylene 2,5-furandicarboxylate) via Direct Esterification Method[J]. Chinese J Appl Chem, 2012,29(7):751-756.  

    16. [16]

      Tomita K, Lda H. Studies on the Formation of Poly-(ethylene terephthalate):2 Rate of Transesterification of Dimethyl Terephthalate with Ethylene Glycol[J]. Polymer, 1973,14(2):55-60. doi: 10.1016/0032-3861(73)90096-7

    17. [17]

      Jedlinski Z, Sek D, Dziewiecka B. Investigations of Aromatic Polyesters with Poly-naphthalene Systems in Main Chain 6 NMR-studies of Structure of Aromatic Copolyesters[J]. Eur Polym J, 1977,13(11):871-874. doi: 10.1016/0014-3057(77)90058-1

  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    8. [8]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    9. [9]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    10. [10]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    17. [17]

      Zhanhong Tong Xiaoyu Xie Fangfang Chen . Appreciating Autumn Leaves: A Brief Analysis of the Causes behind “Frost Leaves Redder than February Flowers”. University Chemistry, 2024, 39(9): 183-188. doi: 10.12461/PKU.DXHX202404005

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(2)
  • Abstract views(449)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return