Citation:
LI Junrong, SHEN Aiguo, HU Jiming. Research Progress of Nanozymes and Its Application in Analysis[J]. Chinese Journal of Applied Chemistry,
;2016, 33(11): 1245-1252.
doi:
10.11944/j.issn.1000-0518.2016.11.160327
-
Nanozymes, developed on the basis of nanomaterials, have promoted the development of chemistry, materials science and biology. Nanozymes have overcome many drawbacks of natural enzymes, such as high cost, easy loss of activity and rigid storage requirements. Currently, nanozymes have had great impact on biosensing, immunoassay and cancer diagnosis. This review article mainly focuses on the categories of nanozymes, the methods to tailor the activity of nanozymes and the research progress in the analytical application of nanozymes. Furthermore, a few thoughts and suggestions have been made to the future development direction of nanozymes.
-
Keywords:
- nanozymes,
- mimetics,
- catalysis,
- biosensing
-
-
-
[1]
[1] Manea F,Houillon F B,Pasquato L,et al. Nanozymes:Gold-Nanoparticle-Based Transphosphorylation Catalysts[J]. Angew Chem Int Ed,2004,43(45):6165-6169.
-
[2]
[2] Gao L,Zhuang J,Nie L,et al. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles[J]. Nat Nanotechnol,2007,2(9):577-583.
-
[3]
[3] Kotov N A. Inorganic Nanoparticles as Protein Mimics[J]. Science,2010,330(6001):188-189.
-
[4]
[4] Wei H,Wang E. Nanomaterials with Enzyme-like Characteristics(nanozymes):Next-generation Artificial Enzymes[J]. Chem Soc Rev,2013,42(14):6060-6093.
-
[5]
[5] Yu F,Huang Y,Cole A J,et al. The Artificial Peroxidase Activity of Magnetic Iron Oxide Nanoparticles and Its Application to Glucose Detection[J]. Biomaterials,2009,30(27):4716-4722.
-
[6]
[6] Karakoti A,Singh S,Dowding J M,et al. Redox-active Radical Scavenging Nanomaterials[J]. Chem Soc Rev,2010,39(11):4422-4432.
-
[7]
[7] Tarnuzzer R W,Colon J,Patil S,et al. Vacancy Engineered Ceria Nanostructures for Protection from Radiation-Induced Cellular Damage[J]. Nano Lett,2005,5(12):2573-2577.
-
[8]
[8] Silva G A. Nanomedicine:Seeing the Benefits of Ceria[J]. Nat Nanotechnol,2006,1(2):92-94.
-
[9]
[9] Mu J,Wang Y,Zhao M,et al. Intrinsic Peroxidase-like Activity and Catalase-like Activity of Co3O4 Nanoparticles[J]. Chem Commun,2012,48(19):2540-2542.
-
[10]
[10] Chen W,Chen J,Liu A L,et al. Peroxidase-Like Activity of Cupric Oxide Nanoparticle[J]. ChemCatChem,2011,3(7):1151-1154.
-
[11]
[11] Wan Y,Qi P,Zhang D,et al. Manganese Oxide Nanowire-mediated Enzyme-linked Immunosorbent Assay[J]. Biosens Bioelectron,2012,33(1):69-74.
-
[12]
[12] Andr R,Nat lio F,Humanes M,et al. V2O5 Nanowires with an Intrinsic Peroxidase-Like Activity[J]. Adv Funct Mater,2011,21(3):501-509.
-
[13]
[13] Alden M,Lai X,Goodman D W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties[J]. Science,1998,281(5383):1647-1650.
-
[14]
[14] Beltrame P,Comotti M,Pina C D,et al. Aerobic Oxidation of Glucose I.Enzymatic Catalysis[J]. J Catal,2004,228(2):282-287.
-
[15]
[15] Wang S,Chen W,Liu A L,et al. Comparison of the Peroxidase-Like Activity of Unmodified, Amino-Modified, and Citrate-Capped Gold Nanoparticles[J]. Chem Phys Chem,2012,13(5):1199-1204.
-
[16]
[16] Zhang L,Laug L,Münchgesang W,et al. Reducing Stress on Cells with Apoferritin-encapsulated Platinum Nanoparticles[J]. Nano Lett,2010,10(1):219-223.
-
[17]
[17] Clark A,Zhu A P,Sun K,et al. Cerium Oxide and Platinum Nanoparticles Protect Cells from Oxidant-mediated Apoptosis[J]. J Nanopart Res,2011,13(10):5547-5555.
-
[18]
[18] He W,Liu Y,Yuan J,et al. Au@Pt Nanostructures as Oxidase and Peroxidase Mimetics for Use in Immunoassays[J]. Biomaterials,2011,32(4):1139-1147.
-
[19]
[19] Liu J,Hu X,Hou S,et al. Au@Pt Core/Shell Nanorods with Peroxidase- and Ascorbate Oxidase-like Activities for Improved Detection of Glucose[J]. Sens Actuators B,2012,166(20):708-714.
-
[20]
[20] Song Y,Wang X,Zhao C,et al. Label-Free Colorimetric Detection of Single Nucleotide Polymorphism by Using Single-Walled Carbon Nanotube Intrinsic Peroxidase-Like Activity[J]. Chem Eur J,2010,16(12):3617-3621.
-
[21]
[21] Cui R,Han Z,Zhu J J. Helical Carbon Nanotubes:Intrinsic Peroxidase Catalytic Activity and Its Application for Biocatalysis and Biosensing[J]. Chem Eur J,2011,17(34):9377-9384.
-
[22]
[22] Liu S,Tian J,Wang L,et al. A General Strategy for the Production of Photoluminescent Carbon Nitride Dots from Organic Amines and Their Application as Novel Peroxidase-like Catalysts for Colorimetric Detection of H2O2 and Glucose[J]. RSC Adv,2012,2(2):411-413.
-
[23]
[23] Shi W,Wang Q,Long Y,et al. Carbon Nanodots as Peroxidase Mimetics and Their Applications to Glucose Detection[J]. Chem Commun,2011,47(23):6695-6697.
-
[24]
[24] Wang X,Qu K,Xu B,et al. Multicolor Luminescent Carbon Nanoparticles:Synthesis, Supramolecular Assembly with Porphyrin, Intrinsic Peroxidase-like Catalytic Activity and Applications[J]. Nano Res,2011,4(9):908-920.
-
[25]
[25] Dai Z,Liu S,Bao J,et al. Nanostructured FeS as a Mimic Peroxidase for Biocatalysis and Biosensing[J]. Chem Eur J,2009,15(17):4321-4326.
-
[26]
[26] Dutta A K,Maji S K,Srivastava D N,et al. Synthesis of FeS and FeSe Nanoparticles from a Single Source Precursor:A Study of Their Photocatalytic Activity, Peroxidase-Like Behavior, and Electrochemical Sensing of H2O2[J]. ACS Appl Mater Interfaces,2012,4(4):1919-1927.
-
[27]
[27] Roy P,Lin Z H,Liang C T,et al. Synthesis of Enzyme Mimics of Iron Telluride Nanorods for the Detection of Glucose[J]. Chem Commun,2012,48(34):4079-4081.
-
[28]
[28] Peng C,Jiang B,Liu Q,et al. Graphene-templated Formation of Two-dimensional Lepidocrocite Nanostructures for High-efficiency Catalytic Degradation of Phenols[J]. Energy Environ Sci,2011,4(6):2035-2040.
-
[29]
[29] Wang Y,Chen S,Ni F,et al. Peroxidase-Like Layered Double Hydroxide Nanoflakes for Electrocatalytic Reduction of H2O2[J]. Electroanalysis,2009,21(19):2125-2132.
-
[30]
[30] Cui L,Yin H,Dong J,et al. A mimic Peroxidase Biosensor Based on Calcined Layered Double Hydroxide for Detection of H2O2[J]. Biosens Bioelectron,2011,26(7):3278-3283.
-
[31]
[31] Cheng Y,Dong Y. Screening Melamine Contaminant in Eggs with Portable Surface-enhanced Raman Spectroscopy Based on Gold Nanosubstrate[J]. Food Control,2011,22(5):685-689.
-
[32]
[32] Asati A,Santra S,Kaittanis C,et al. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles[J]. Angew Chem Int Ed,2009,48(13):2308-2312.
-
[33]
[33] Peng F F,Zhang Y,Gu N. Size-dependent Peroxidase-like Catalytic Activity of Fe3O4 Nanoparticles[J]. Chinese Chem Lett,2008,19(6):730-733.
-
[34]
[34] Wan Y,Qi P,Zhang D,et al. Manganese Oxide Nanowire-mediated Enzyme-linked Immunosorbent Assay[J]. Biosens Bioelectron,2012,33(1):69-74.
-
[35]
[35] Liu S,Lu F,Xing R,et al. Structural Effects of Fe3O4 Nanocrystals on Peroxidase-Like Activity[J]. Chem Eur J,2011,17(2):620-625.
-
[36]
[36] Nasir Baig R B,Varma R S. A Facile One-pot Synthesis of Ruthenium Hydroxide Nanoparticles on Magnetic Silica:Aqueous Hydration of Nitriles to Amides[J]. Chem Commun,2012,48(50):6220-6222.
-
[37]
[37] He W,Wu X,Liu J,et al. Design of AgM Bimetallic Alloy Nanostructures(M=Au,Pd,Pt) with Tunable Morphology and Peroxidase-like Activity[J]. Chem Mater,2010,22(9):2988-2994.
-
[38]
[38] Zhu A P,Sun K,Petty H R. Titanium Doping Reduces Superoxide Dismutase Activity, but not Oxidase Activity, of Catalytic CeO2 Nanoparticles[J]. Inorg Chem Commun,2012,15(12):235-237.
-
[39]
[39] Lee Y,Garcia M A,Frey Huls N A,et al. Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles[J]. Angew Chem Int Ed,2010,49(7):1271-1274.
-
[40]
[40] Liu Z,Zhao B,Shi Y,et al. Novel Nonenzymatic Hydrogen Peroxide Sensor Based on Iron Oxide-Silver Hybrid Submicrospheres[J]. Talanta,2010,81(4/5):1650-1654.
-
[41]
[41] Chen G X,Zhao Y,Fu G,et al. Interfacial Effects in Iron-Nickel Hydroxide-Platinum Nanoparticles Enhance Catalytic Oxidation[J]. Science,2014,344(6183):495-499.
-
[42]
[42] Singh S,Dosani T,Karakoti A S,et al. A Phosphate-dependent Shift in Redox State of Cerium Oxide Nanoparticles and Its Effects on Catalytic Properties[J]. Biomaterials,2011,32(28):6745-6753.
-
[43]
[43] Bao Z Y,Lei D Y,Jiang R,et al. Bifunctional Au@Pt Core-shell Nanostructures for in situ Monitoring of Catalytic Reactions by Surface-enhanced Raman Scattering Spectroscopy[J]. Nanoscale,2014,6(15):9063-9070.
-
[44]
[44] Wei H,Wang E. Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection[J]. Anal Chem,2008,80(6):2250-2254.
-
[45]
[45] Chang Q,Deng K,Zhu L,et al. Determination of Hydrogen Peroxide with the Aid of Peroxidase-like Fe3O4 Magnetic Nanoparticles as the Catalyst[J]. Microchim Acta,2009,165(3):299-305.
-
[46]
[46] Wang L,Shen A,Li X,et al. Inclusion of Guest Materials in Aqueous Coordination Network Shells Spontaneously Generated by Reacting 2,5-Dimercapto-1,3,4-thiadiazole with Nanoscale Metallic Silver[J]. RSC Adv,2014,4(65):34294-34302.
-
[47]
[47] Gao Y,Wang G,Huang H,et al. Fluorometric Method for the Determination of Hydrogen Peroxide and Glucose with Fe3O4 as Catalyst[J]. Talanta,2011,85(2):1075-1080.
-
[48]
[48] Zhang L,Zhai Y,Gao N,et al. Sensing H2O2 with Layer-by-layer Assembled Fe3O4 PDDA Nanocomposite Film[J]. Electrochem Commun,2008,10(10):1524-1526.
-
[49]
[49] Jiao X,Song H,Zhao H,et al. Well-redispersed Ceria Nanoparticles:Promising Peroxidase Mimetics for H2O2 and Glucose Detection[J]. Anal Methods,2012,4(10):3261-3267.
-
[50]
[50] Song Y,Qu K,Zhao C,et al. Graphene Oxide:Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection[J]. Adv Mater,2010,22(19):2206-2210.
-
[51]
[51] Fan Y,Huang Y. The Effective Peroxidase-like Activity of Chitosan-functionalized CoFe2O4 Nanoparticles for Chemiluminescence Sensing of Hydrogen Peroxide and Glucose[J]. Analyst,2012,137(5):1225-1231.
-
[52]
[52] Jiang X,Sun C,Guo Y,et al. Peroxidase-like Activity of Apoferritin Paired Gold Clusters for Glucose Detection[J]. Biosens Bioelectron,2015,64:165-170.
-
[53]
[53] Li J,Lv L,Zhang G,et al. Core-shell Fructus Broussonetia-like Au@Ag@Pt Nanoparticles as Highly Efficient Peroxidase Mimetics for Supersensitive Resonance-enhanced Raman Sensing[J]. Anal Methods,2016,8(9):2097-2105.
-
[54]
[54] Ding N,Yan N,Ren C,et al. Colorimetric Determination of Melamine in Dairy Products by Fe3O4 Magnetic Nanoparticles-H2O2-ABTS Detection System[J]. Anal Chem,2010,82(13):5897-5899.
-
[55]
[55] Li J,Zhang G,Wang L,et al. Simultaneous Enzymatic and SERS Properties of Bifunctional Chitosan-modified Popcorn-like Au-Ag Nanoparticles for High Sensitive Detection of Melamine in Milk Powder[J]. Talanta,2015,140(1):204-211.
-
[56]
[56] Qiu Z L,Shu J,Jin G X,et al. Invertase-labeling Gold-dendrimer for in situ Amplified Detection Mercury(Ⅱ) with Glucometer Readout and Thymine-Hg2+-Thymine Coordination Chemistry[J]. Biosens Bioelectron,2016,77:681-686.
-
[57]
[57] Wang J,Ren K,He B J. Synthesis and Sensing Behavior of Fluorescence "Turn-on" Chemosensors Based on Rhodamine for Hg(Ⅱ) Detection[J]. Sens Actuators B,2016,224:465-477.
-
[58]
[58] Long Y J,Li Y F,Liu Y,et al. Visual Observation of the Mercury-stimulated Peroxidase Mimetic Activity of Gold Nanoparticles[J]. Chem Commun,2011,47(43):11939-11941.
-
[59]
[59] Lien C W,Huang C C,Chang H T. Peroxidase-mimic Bismuth-gold Nanoparticles for Determining the Activity of Thrombin and Drug Screening[J]. Chem Commun,2012,48(64):7952-7954.
-
[60]
[60] Asati A,Santra S,Kaittanis C,et al. Oxidase-like Activity of Polymer-coated Cerium Oxide Nanoparticles[J]. Angew Chem Int Ed,2009,48(13):2308-2312.
-
[1]
-
-
-
[1]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[2]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[3]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[4]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[5]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[6]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[7]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[8]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[9]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[10]
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
-
[11]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[12]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[13]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[14]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[15]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[16]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[17]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[18]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[19]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[20]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(449)
- HTML views(45)