Citation: GUO Qi, WU Xinqiang, HAN Enhou, KE Wei. In-situ pH Measurement System and Mechanism for High Temperature Aqueous Solutions[J]. Chinese Journal of Applied Chemistry, ;2016, 33(11): 1329-1336. doi: 10.11944/j.issn.1000-0518.2016.11.160082 shu

In-situ pH Measurement System and Mechanism for High Temperature Aqueous Solutions

  • Corresponding author: WU Xinqiang, 
  • Received Date: 3 March 2016
    Available Online: 18 May 2016

    Fund Project:

  • A system based on yttria-stabilized zirconia(YSZ) membrane electrode and external pressure balanced Ag/AgCl electrode has been developed for in-situ pH measurement in high temperature aqueous solutions. The pH values of H3BO3\LiOH solutions at 473.15 K to 573.15 K were measured by this system and compared with thermodynamically calculated pH values. The precise pH measurement is achieved when temperature is higher than 548.15 K. While below 548.15 K, deviation exists due to the large resistance of YSZ ceramic membrane and it increases with decreasing temperature. The mechanism of pH measurement in high temperature aqueous solutions is also discussed.
  • 加载中
    1. [1]

      [1] Hara N,Macdonald D D. Development of Dissolved Hydrogen Sensors Based on Yttria-Stabilized Zirconia Solid Electrolyte with Noble Metal Electrodes[J]. J Electrochem Soc,1997,144(12):4152-4157.

    2. [2]

      [2] Lvov S N,Zhou X Y,Ulmer G C,et al. Progress on Yttria-Stabilized Zirconia Sensors for Hydrothermal pH Measurements[J]. Chem Geol,2003,198(3/4):141-162.

    3. [3]

      [3] Mesmer R E,Baes C F Jr. Phosphoric Acid Dissociation Equilibria Aqueous Solutions to 300 Degrees C[J]. J Solution Chem,1974,3(4):307-322.

    4. [4]

      [4] Mesmer R E,Baes C F,Sweeton F H. Acidity Measurements at Elevated Temperature.4. Apparent Dissociation Product of Water in 1-M Potassium Chloride up to 292 Degrees[J]. J Phys Chem,1970,74(9):1937-1942.

    5. [5]

      [5] Mesmer R E,Baes C F,Sweeton F H. Acidity Measurements at Elevated-Temperatures.6. Boric-Acid Equilibria[J]. Inorg Chem,1972,11(3):537-543.

    6. [6]

      [6] Tsuruta T,Macdonald D D. Measurement of pH and Redox Potential in Boric-Acid Lithium Hydroxide Buffer Solutions at Elevated-Temperatures[J]. J Electrochem Soc,1981,128(6):1199-1203.

    7. [7]

      [7] Macdonald D D,Wentrcek P R,Scott A C. The Measurement of pH in Aqueous Systems at Elevated-Temperatures Using Palladium Hydride Electrodes[J]. J Electrochem Soc,1980,127(8):1745-1751.

    8. [8]

      [8] Dobson J V,Jasinski R,Chapman B R,et al. Palladium Hydride pH Electrode for Use in Buffered Fluoride Etch Solutions[J]. J Electrochem Soc,1975,122(12):1634-1635.

    9. [9]

      [9] Nagy Z,Yonco R M. Palladium Hydrogen Membrane-Electrode for High-Temperature High-Pressure Aqueous-Solutions[J]. J Electrochem Soc,1986,133(11):2232-2235.

    10. [10]

      [10] Niedrach L W. Oxygen Ion-Conducting Ceramics-New Application in High-Temperature High-Pressure pH Sensors[J]. Science,1980,207(4436):1200-1202.

    11. [11]

      [11] Niedrach L W. A New Membrane-Type pH Sensor for Use in High Temperature-High Pressure Water[J]. J Electrochem Soc,1980,127(10):2122-2130.

    12. [12]

      [12] Hettiarachchi S,Kedzierzawski P,Macdonald D D. pH Measurements of High Temperature Aqueous Environments with Stabilized-Zirconia Membranes[J]. J Electrochem Soc,1985,132(8):1866-1870.

    13. [13]

      [13] Tsuruta T,Macdonald D D. Stabilized Ceramic Membrane Electrodes for the Measurement of pH at Elevated-Temperatures[J]. J Electrochem Soc,1982,129(6):1221-1225.

    14. [14]

      [14] Hettiarachchi S,Makela K,Song H,et al. The Viability of pH Measurements in Supercritical Aqueous Systems[J]. J Electrochem Soc,1992,139(1):L3-L4.

    15. [15]

      [15] Niedrach L W. pH Measurements of High-Temperature Aqueous Environments with Stabilized-Zirconia Membranes[J]. J Electrochem Soc,1986,133(7):1521-1521.

    16. [16]

      [16] Niedrach L W. Use of a High-Temperature pH Sensor as a Pseudo-Reference Electrode in the Monitoring of Corrosion and Redox Potentials at 285-Degrees-C[J]. J Electrochem Soc,1982,129(7):1445-1449.

    17. [17]

      [17] Zhang W,Charles E A. A Thermodynamic Approach to Calculate the Yttria-Stabilized Zirconia pH Sensor Potential[J]. J Appl Electrochem,2003,33(11):1025-1033.

    18. [18]

      [18] Macdonald D D,Scott A C,Wentrcek P. External Reference Electrodes for Use in High-Temperature Aqueous Systems[J]. J Electrochem Soc,1979,126(6):908-911.

    19. [19]

      [19] Macdonald D D,Hettiarachchi S,Song H,et al. Measurement of pH in Subcritical and Supercritical Aqueous Systems[J]. J Solution Chem,1992,21(8):849-881.

    20. [20]

      [20] Kerner Z,Balog J,Nagy G. Testing of High Temperature Reference Electrodes for Light Water Reactor Applications[J]. Corros Sci,2006,48(8):1899-1911.

    21. [21]

      [21] Lvov S N,Gao H,Macdonald D D. Advanced Flow-Through External Pressure-Balanced Reference Electrode for Potentiometric and pH Studies in High Temperature Aqueous Solutions[J]. J Electroanal Chem,1998,443(2):186-194.

    22. [22]

      [22] GUO Qi,WU Xinqiang,WANG Xiang,et al.A Ceramic Membrane Electrode for Electrochemical Tests in High Temperature High Pressure Water:CN,201510141325.6[P],2015-03-27(in Chinese).郭琦,吴欣强,王翔,等. 一种能实现高温高压水电化学测试的陶瓷薄膜电极:中国,201510141325.6[P],2015-03-27.

    23. [23]

      [23] Bojinova M,Galtayries A,Kinnunen P,et al. Estimation of the Parameters of Oxide Film Growth on Nickel-Based Alloys in High-Temperature Water Electrolytes[J]. Electrochim Acta,2007,52(26):7475-7483.

    24. [24]

      [24] Liu X H,Wu X Q,Han E-H. Influence of Zn Injection on Characteristics of Oxide Film on 304 Stainless Steel in Borated and Lithiated High Temperature Water[J]. Corros Sci,2011,53(10):3337-3345.

    25. [25]

      [25] Niedrach L W,Stoddard W H. Zirconia Membrane pH Sensors[J]. Ind Eng Chem Prod Res Dev,1983,22(4):594-599.

    26. [26]

      [26] Taylor D F,Caramihas C A. Crevice Corrosion in High-Temperature Aqueous Systems Potential pH Measurements in Alloy-600 Crevices at 288-Degrees-C[J]. J Electrochem Soc,1982,129(11):2458-2464.

    27. [27]

      [27] Covington A K,Bates R G,Durst R A. Difinition of pH Scales, Standard Reference Values, Measurement of pH and Related Terminology[J]. Pure Appl Chem,1985,57(3):531-542.

    28. [28]

      [28] Covington A K,Ferra M I A,Zou Z Y. Application of Multilinear Regression Analysis to the Evaluation of Standard pH Values for Potassium Hydrogen Phthalate Reference Value Standard Solutions at Temperatures up to 498K[J]. Electrochim Acta,1985,30(6):805-809.

    29. [29]

      [29] Wagnera W,Pruβ A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use[J]. J Phys Chem Ref Data,2002,31(2):387-535.

    30. [30]

      [30] Palmer D A,Bénézeth P,Wesolowski D J. Boric Acid Hydrolysis:A New Look at the Available Data[J]. Power Plant Chem,2000,2(5):261-264.

    31. [31]

      [31] Tremaine P R,Von Masscow R,Shierman G R. A Calculation of Gibbs Free Energies for Ferrous Ions and the Solubility of Magnetite in H2O And D2O to 300 C[J]. Thermochim Acta,1977,19(3):287-300.

    32. [32]

      [32] IAEA,High Temperature on-Line Monitoring of Water Chemistry and Corrosion Control in Water Cooled Power Reactors[R]. ISBN:92-0-112702-2,2002.

  • 加载中
    1. [1]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    2. [2]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    3. [3]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    4. [4]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    5. [5]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    8. [8]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    9. [9]

      Fengmei Wang Xin Zhang Hong Yan Xiangyu Xu Guirong Wang . Inverted 'Π' Graphic Memory Method for Thermodynamic Basic Equations and the Application in Teaching Practice. University Chemistry, 2025, 40(11): 369-375. doi: 10.12461/PKU.DXHX202412087

    10. [10]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    11. [11]

      Xin ZhouYiting HuoSongyu YangBowen HeXiaojing WangZhen WuJianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160

    12. [12]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    13. [13]

      Limin Zhang Mengmeng Liu Yang Tian . Size Determines Performance: A Novel Experimental Design for Voltammetric Teaching at Microelectrode and Glassy Carbon Electrode. University Chemistry, 2025, 40(11): 281-288. doi: 10.12461/PKU.DXHX202412047

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    16. [16]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    17. [17]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Qingtao Niu Xinyao Xu Weiyue Yu Shuxiang Meng Zhiguo Lv Manman Jin . Exploration and Practice of Science-Education Integration in Chemical Engineering Thermodynamics Teaching for Chemical Engineering Majors: A Case of Chemical Engineering Physical Property Data Estimation and Chemical Reaction Equilibrium. University Chemistry, 2025, 40(10): 1-9. doi: 10.12461/PKU.DXHX202412029

    19. [19]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(0)
  • Abstract views(708)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return