Citation: ZHOU Bukang, WANG Qi, CHEN Yazhong, CUI Peng, SHEN Zebin, ZHANG Qinghong, WANG Ye. Effect of Potassium on the Performance of MoP-based Catalysts in Methyl Mercaptan Synthesis from High H2S-Containing Syngas[J]. Chinese Journal of Applied Chemistry, ;2016, 33(9): 1079-1084. doi: 10.11944/j.issn.1000-0518.2016.09.160021 shu

Effect of Potassium on the Performance of MoP-based Catalysts in Methyl Mercaptan Synthesis from High H2S-Containing Syngas

  • Corresponding author: WANG Qi, 
  • Received Date: 13 January 2016
    Available Online: 3 May 2016

    Fund Project:

  • A series of KxMoP/Al2O3(x is K/Mo molar ratio, 0≤x≤3) catalysts with different K/Mo molar ratios was prepared through co-impregnation and characterized using X-ray diffraction(XRD), temperature-programmed reduction(TPR) and laser Raman spectroscopy(LRS). The effects of different potassium content of the catalysts for the synthesis of methyl mercaptan from high H2S-containing syngas were investigated. The results indicate that MoP/Al2O3 catalysts are formed by hydrogen reduction at 850℃ from phosphorus molybdenum oxide precursor. With a small amount of potassium, the catalysts show higher methane selectivity. Further increase of potassium content promotes the generation of activity molybdenum sulfur phase, showing good methyl mercaptan selectivity. Excessive potassium hinders the generation of methyl mercaptan. When K/Mo molar ratio is between 2 and 2.5, MoP-based catalysts shows good catalytic activity and selectivity.
  • 加载中
    1. [1]

      [1] Hao Y J,Zhang Y H,Chen A P,et al.Study on Methanethion Synthesis from H2S-Rich Syngas Over K2MoO4 Catalyst Supported on Electrolessly Ni-plated SiO2[J].Catal Lett,2009,129(3/4):486-492.

    2. [2]

      [2] Barrault J,Boulinguiez M,Forquy C,et al.Synthesis of Methanethiol from Carbon Oxides and H2S with Tungsten-Alumina Catalysts[J].Appl Catal,1987,33(2):309-330.

    3. [3]

      [3] WANG Qi,CHEN Aiping,XIE Chunfang,et al.Novel Mo-based Catalysts for Methanethiol Synthesis from High H2S-containing Syngas[J].Acta Chmi Sin,2004,62(23):2297-2302(in Chinese).王琪,陈爱平,谢春芳,等.高硫化氢合成气制甲硫醇新型钼基催化剂研究[J].化学学报,2004,62(23):2297-2302.

    4. [4]

      [4] WANG Qi,YANG Yiquan,YUAN Youzhu,et al.The Study of the Promotion of Co to the Supported Catalyst K2MoO4 for the Synthese of Methanethiol from H2S-Containing Syngas[J].J Xiamen Univ(Nat Sci),2003,42(1):64-68(in Chinese).王琪,杨意泉,袁友珠,等.钴对高硫合成气制甲硫醇负载型钼酸钾催化剂的促进作用[J].厦门大学学报(自然科学版),2003,42(1):64-68.

    5. [5]

      [5] WANG Qi,HAO Yingjuan,CHEN Aiping,et al.Effect on Thermal Treatment on Structure and Catalytic Performance of K2MoO4-NiO/SiO2 Catalyst for One-step Synthesis of Methanethiol from High H2S-Containing Syngas[J].Chinese J Catal,2010,31(2):242-247(in Chinese).王琪,郝影娟,陈爱平,等.热处理对高硫化氢合成气一步法制甲硫醇K2MoO4-NiO/SiO2催化剂结构及性能的影响[J].催化学报,2010,31(2):242-247.

    6. [6]

      [6] Bai J,Li X,Wang A J,et al.Incorporation of Sulfur on the Bulk MoP During Hydrodesulfurization Reaction:Different Role of H2S and Dibenzothiophene[J].J Catal,2013,300(1):197-200.

    7. [7]

      [7] Oyama S T,Gott T,Zhao H,et al.Transition metal Phosphide Hydroprocessing Catalysts:A Review[J].Catal Today,2009,143(1/2):94-107.

    8. [8]

      [8] Sun F X,Wu W C,Wu Z L,et al.Dibenzothiophene Hydrodesulfurization Activity and Surface Sites of Silica-supported MoP,Ni2P and Ni-Mo-P Catalysts[J].J Catal,2004,228(2):298-310.

    9. [9]

      [9] ZHOU Guilin,WANG Puguang,JIANG Zongxuan,et al.Selective Hydrogenation of Acetylene over a MoP Catalyst[J].Chinese J Catal,2011,32(1):27-30(in Chinese).周桂林,王普光,蒋宗轩,等.MoP催化剂上乙炔选择性加氢[J].催化学报,2011,32(1):27-30.

    10. [10]

      [10] YANG Yiquan,WANG Qi,DAI Shenjun,et al.Preparation of Mo-S-based Catalysts for Methanthiol Synthesis from High H2S-Containing Syngas[J].Chinese J Appl Chem,1999,16(4):47-51(in Chinese).杨意泉,王琪,戴深峻,等.高硫合成气制甲硫醇钼硫基催化剂的制备[J].应用化学,1999,16(4):47-51.

    11. [11]

      [11] Clark P,Oyama S T.Alumina-supported Molybdenum Phosophide Hydroprocessing Catalysts[J].J Catal,2003,218(1):78-87.

    12. [12]

      [12] Damyanova S,Petrov L,Grange P.XPS Characterization of Zirconiumpromoted CoMo Hydrodesulfurization Catalysts[J].Appl Catal A:Gen,2003,239(1):241-252.

    13. [13]

      [13] Jeziorowski H,Knozinger H.Raman and Ultraviolet Spectroscopic Characterization of Molybdena on Alumina[J].J Phys Chem,1979,83(9):1166-1173.

    14. [14]

      [14] Stinner C,Prins R,Weber T.Formation,Structure,and HDN Activity of Unsupported Molybdenum Phosphide[J].J Catal,2000,191(2):438-444.

    15. [15]

      [15] Cheng C P,Schrader G L.Characterization of Supported Molybdate Catalysts During Preparation Using Laser Raman Spectroscopy[J].J Catal,1979,60(2):276-294.

    16. [16]

      [16] WANG Qi.Study on the Mo-S-based Catalysts Promoted by Nickel for Methanethiol Synthesis from High H2S-Containing Gas[D].Xiamen:Xiamen University,2007(in Chinese).王琪.镍促进高硫合成气制甲硫醇钾钼基催化剂的研究[D].厦门:厦门大学,2007.

    17. [17]

      [17] CHEN Aiping.Study on the Synthesis of Methanethiol from H2S-rich Syngas over Mo-based Catalysts[D].Xiamen:Xiamen University,2008(in Chinese).陈爱平.钼基催化剂上的高硫合成气制甲硫醇研究[D].厦门:厦门大学,2008.

    18. [18]

      [18] WANG Qi,HAO Yingjuan,CHEN Aiping,et al.XRD and TPR Studies on MoO3/SiO2 Catalysts Doped with Potassium[J].Chinese J Appl Chem,2007,24(5):561-564(in Chinese).王琪,郝影娟,陈爱平,等.钾修饰的MoO3/SiO2催化剂的XRD和TPR表征[J].应用化学,2007,24(5):561-564.

  • 加载中
    1. [1]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    2. [2]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    3. [3]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    12. [12]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    13. [13]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    18. [18]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

Metrics
  • PDF Downloads(0)
  • Abstract views(546)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return