Citation: XIE Rongjun, ZHOU Tianliang, TAKAHAHIS Kohei, HIROSAKI Naoto. Beta-Sialon(Si6-zAlzOzN8-z):Eu2+: A Promising Narrow-band Green Phosphor for Light-emitting Diode Backlights[J]. Chinese Journal of Applied Chemistry, ;2016, 33(8): 855-866. doi: 10.11944/j.issn.1000-0518.2016.08.160240 shu

Beta-Sialon(Si6-zAlzOzN8-z):Eu2+: A Promising Narrow-band Green Phosphor for Light-emitting Diode Backlights

  • Corresponding author: XIE Rongjun, 
  • Received Date: 7 June 2016
    Available Online: 23 June 2016

    Fund Project:

  • GaN-based white light-emitting diode(LED) is now an emerging backlight technology for large color gamut and high efficiency liquid crystal displays. In this technology, phosphors are key materials to control the color-space coverage, luminous efficiency, and lifetime of the backlight units, which are required to have a desired emission and a narrow emission band. β-Sialon:Eu2+(sialon:silicon aluminum oxynitride, Si6-zAlzOzN8-z) is such a green phosphor because it has an emission band centered at 525~545 nm and a small band width(~55 nm). This contribution overviews the synthesis, luminescence, electronic and crystal structure, reliability and applications of β-sialon:Eu2+. From both structure calculations and experimental observations, Eu2+ is seen to be accommodated into a large void along the c-axis, and coordinated to six nitrogen/oxygen atoms at an equivalent distance. The narrow emission band is thus ascribed to the high symmetry of the local structure of Eu2+. Both of the emission band and the band width of β-sialon:Eu2+ can be tuned by tailoring the composition(e.g., the z value), and β-sialon:Eu2+ with shorter wavelengths and narrower bands can be achieved at lower z values. Combined with other red phosphors, β-sialon:Eu2+ enables to produce wider color gamut backlights(15% up) than the conventional yttrium aluminum garnet(YAG)-based ones. Both the excellent luminescence properties and reliability make β-sialon:Eu2+ to be an extremely important green phosphor for use in advanced displays.
  • 加载中
    1. [1]

      [1] Xie R J,Hirosaki N,Takeda T. Wide Color Gamut Backlight for Liquid Crystal Displays Using Three-band Phosphor-converted White Light-emitting Diodes[J]. Appl Phys Express,2009,2(2):022401-1-022401-3.

    2. [2]

      [2] Jang E,Jun S,Jang H,et al. White-light-emitting Diodes with Quantum Dot Color Converters for Display Backlights[J]. Adv Mater,2010,22(28):3076-3080.

    3. [3]

      [3] Fukuda Y,Matsuda N,Okada A,et al. White Light-emitting Diodes for Wide-color-gamut Backlight Using Green-emitting Sr-Sialon Phosphor[J]. Jpn J Appl Phys,2012,51(12R):122101-1-122101-3.

    4. [4]

      [4] Luo Z,Chen Y,Wu S T. Wide Color Gamut LCD with a Quantum Dot Backlight[J]. Opt Express,2013,21(22):26269-26284.

    5. [5]

      [5] Ito Y,Hori T,Kusunoki T,et al. A Phosphor Sheet and a Backlight System Providing Wider Color Gamut for LCDs[J]. J Soc Inf Display,2014,22(8):419-428.

    6. [6]

      [6] Lee S H,Lee K H,Jo J H,et al. Remote-type, High-color Gamut White Light-emitting Diode Based on InP Quantum Dot Color Converters[J]. Opt Mater Express,2014,4(7):1297-1302.

    7. [7]

      [7] Oh J H,Kang H,Ko M,et al. Analysis of Wide Color Gamut of Green/Red Bilayered Freestanding Phosphor Film-capped White LEDs for LCD Backlight[J]. Opt Express,2015,23(15):A791-A804.

    8. [8]

      [8] Shirasaki Y,Supran G J,Bawendi M G,et al. Emergence of Colloidal Quantum-dot Light-emitting Technologies[J]. Nat Photon,2013,7(1):13-23.

    9. [9]

      [9] Coe-Sullivan S,Liu W,Allen P,et al. Quantum Dots for LED Downconversion in Display Applications[J]. ECS J Solid State Sci Technol,2013,2(2):R3026-R3030.

    10. [10]

      [10] Fukuda Y,Ishida K,Mitsuishi I,et al. Luminescence Properties of Eu2+-doped Green-emitting Sr-Sialon Phosphor and Its Application to White Light-emitting Diodes[J]. Appl Phys Express,2009,2(1):012401-1-012401-3.

    11. [11]

      [11] Hirosaki N,Xie R J,Kimoto K,et al. Characterization and Properties of Green-emitting β-SiAlON:Eu2+ Powder Phosphors for White Light-emitting Diodes[J]. Appl Phys Lett,2005,86(21):211905-1-211905-3.

    12. [12]

      [12] Xie R J,Hirosaki N,Li H L,et al. Synthesis and Photoluminescence Properties of β-Sialon:Eu2+(Si6-zAlzOzN8-z:Eu2+):A Promising Green Oxynitride Phosphor for White Light-emitting Diodes[J]. J Electrochem Soc,2007,154(10):J314-J319.

    13. [13]

      [13] Munir Z A. Synthesis of High Temperature Materials by Self-propagating Combustion Methods[J]. Am Ceram Soc Bull,1988,67(2):342-349.

    14. [14]

      [14] Zhou Y,Yoshizawa Y,Hirao K,et al. Preparation of Eu-doped β-SiAlON Phosphors by Combustion Synthesis[J]. J Am Ceram Soc,2008,91(9):3082-3085.

    15. [15]

      [15] Xu K,He G,Liu G,et al. Combustion Synthesis of Eu2+ Doped β-SiAlON Phosphors by Salt Assistance[J]. ECS J Solid State Sci Technol,2013,2(11):R230-R232.

    16. [16]

      [16] Niu J,Saito G,Akiyama T. A New Route to Synthesize β-SiAlON:Eu2+ Phosphors for White Light-emitting Diodes[J]. Appl Phys Express,2013,6(4):0421059-1-0421059-3.

    17. [17]

      [17] Yan Q,Liu Q,Liu Q F. Synthesis of Rod-like High-purity β-Sialon Powder by a Novel Carbothermal Reduction-nitridation Method with a Nanocasting Procedure[J]. J Am Ceram Soc,2010,93(9):2470-2471.

    18. [18]

      [18] Jun K,Lee K,Kim G,et al. A new Route for the Synthesis of β-Sialon Phosphors Using Pyrophyllite Powders[J]. Ceram Int,2013,39(1):S349-S353.

    19. [19]

      [19] Bernardo E,Parcianello G,Pilati S,et al. Novel Synthesis of Eu-doped SiAlON Luminescent Materials from a Preceramic Polymer and Nano-sized Fillers[J]. J Asian Ceram Soc,2014,2(2):158-164.

    20. [20]

      [20] Xie R J,Hirosaki N,Mitomo M,et al. Optical Properties of Eu2+ in α-SiAlON[J]. J Phys Chem B,2004,108(32):12027-12031.

    21. [21]

      [21] Van Krevel J W H,Hintzen H T,Metselaar R,et al. Long Wavelength Ce3+ Emission in Y-Si-O-N Materials[J]. J Alloys Compds,1998,268(1/2):272-277.

    22. [22]

      [22] Boyko T D,Gross T,Schwarz Z M,et al. The Local Crystal Structure and Electronic Band Gap of β-Sialons[J]. J Mater Sci,2014,49(8):3242-3252.

    23. [23]

      [23] Takahashi K,Xie R J,Hirosaki N. Toward Higher Color Purity and Narrower Emission Band β-Sialon:Eu2+ by Reducing the Oxygen Concentration[J]. Electrochem Solid State Lett,2011,14(11):E38-E40.

    24. [24]

      [24] Takase A,Umebayashi S,Kishi K. Infra-red Absorption Spectroscopic Study of β-Sialons in the System Si3N4-Al2O3·AlN[J]. Jpn J Appl Phys,1982,21(10):1447-1450.

    25. [25]

      [25] Li Y Q,Hirosaki N,Xie R J,et al. Crystal and Electronic Structure, Luminescence Properties of Eu2+-doped Si6-zAlzOzN8-z and MySi6-zAlz-yOz+yN8-z-y(M=2Li,Mg,Ca,Sr,Ba)[J]. J Solid State Chem,2008,181:3200-3210.

    26. [26]

      [26] Yoo D S,Ryu J H,Park H L,et al. Atomic and Electronic Structure Investigation and Luminescene Property of Eu2+-doped β-Sialon Green Phosphor:Ab initio Calculations[J]. Jpn J Appl Phys,2010,49(65):06GJ07.

    27. [27]

      [27] Kimoto K,Xie R J,Matsui Y,et al. Direct Observation of Sinigle Dopant Atom in Light-emitting Phosphor of β-SiAlON:Eu2+[J]. Appl Phys Lett,2009,94:041908-1-041908-3.

    28. [28]

      [28] Brgoch J,Gaultois M W,Balasubramanian M,et al. Local Structure and Structtural Rigidity of the Green Phosphor β-SiAlON:Eu2+[J]. Appl Phys Lett,2014,105:181904-1-181904-3.

    29. [29]

      [29] Xie R J,Li Y Q,Hirosaki N,et al. Nitride Phosphors and Solid State Lighting[M]. CRC Press,2011.

    30. [30]

      [30] Yamada S,Emoto H,Ibukiyama M,et al. Properties of SiAlON Powder Phosphors for White LEDs[J]. J Euro Ceram Soc,2012,32(7):1355-1358.

    31. [31]

      [31] Wang L,Wang X J,Takahashi K,et al. Highly Efficient Narrow-band Green and Red Phosphors Enabling Wider Color-gamut LED Backlight for More Brilliant Displays[J]. Opt Express,2015,23(22):28707-28717.

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    5. [5]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    6. [6]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    9. [9]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    13. [13]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    14. [14]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

Metrics
  • PDF Downloads(14)
  • Abstract views(973)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return