Citation: TAO Huichun, ZHU Yu, YOU Jichun. Kinetics of Surface Phase Separation in Poly(methyl methacrylate)/Poly(styrene-ran-acrylonitrile) Blend Film with Off-critical Component[J]. Chinese Journal of Applied Chemistry, ;2016, 33(8): 894-899. doi: 10.11944/j.issn.1000-0518.2016.08.150362 shu

Kinetics of Surface Phase Separation in Poly(methyl methacrylate)/Poly(styrene-ran-acrylonitrile) Blend Film with Off-critical Component

  • Corresponding author: YOU Jichun, 
  • Received Date: 13 October 2015
    Available Online: 6 January 2016

    Fund Project:

  • The kinetics of surface phase separation in PMMA/SAN[poly(methyl methacrylate)/poly(styrene-ran-acrylonitrile)] blend film with off-critical component has been investigated by means of in situ AFM(atomic force microscopy). Our results indicate that the surface phase separation observed exists three stages. The exponent of zero in the first stage validate the Cahn theory; In the second one, the phase behaviors are mainly controlled by Brownian-Diffusion, corresponding to the exponent of 1/3. The hydrokinetics in the last stage results in the occurrence of 2/3 as the characteristic exponent. Our results are significant for not only the understanding of phase separation of polymer blend, but also the engineering and application of polymer films.
  • 加载中
    1. [1]

      [1] Cahn J W,Hilliard J E. Free Energy of a Nonuniform System.I.Interfacial Free Energy[J]. J Chem Phys,1958,28(2):258-267.

    2. [2]

      [2] Brown G,Chakrabarti A. Surface-Directed Spinodal Decomposition in a Two-Dimensional Model[J]. Phys Rev A,1992,46(8):4829-4835.

    3. [3]

      [3] Wu Y,Alexander F J,Lookman T,et al. Effects of Hydrodynamics on Phase Transition Kinetics in Two-Dimensional Binary Fluids[J]. Phys Rev Lett,1995,74(19):3852-3855.

    4. [4]

      [4] Kubota K,Kuwahara N,Eda H,et al. Spinodal Decomposition in a Critical Isobutyric Acid and Water Mixture[J]. Phys Rev A,1992,45(15):R3377-R3379.

    5. [5]

      [5] Wang H,Composto R J. Thin Film Polymer Blends Undergoing Phase Separation and Wetting:Identification of Early, Intermediate, and Late Stages[J]. J Chem Phys,2000,113(22):10386-10397.

    6. [6]

      [6] Wang H,Composto R J. Kinetics of Surface and Interfacial Fluctuations in Phase Separating Polymer Blend Films[J]. Macromolecules,2002,35(7):2799-2809.

    7. [7]

      [7] Lifshitz I M,Slyozov V V. The Kinetics of Precipitation from Supersaturated Solid Solutions[J]. J Phys Chem Solids,1961,19(1/2):35-50.

    8. [8]

      [8] Siggia E D. Late Stages of Spinodal Decomposition in Binary Mixtures[J]. Phys Rev A,1979,20(2):595-605.

    9. [9]

      [9] Wang H,Composto R J. Wetting and Phase Separation in Polymer Blend Films:Identification of Four Thickness Regimes with Distinct Morphological Pathways[J]. Interface Sci,2003,11(2):237-248.

    10. [10]

      [10] Chung H,Composto R J. Breakdown of Dynamic Scaling in Thin Film Binary Liquids Undergoing Phase Separation[J]. Phys Rev Lett,2004,92(18):185704.

    11. [11]

      [11] García R,Pérez R. Dynamic Atomic Force Microscopy Methods[J]. Surf Sci Rep,2002,47(6):197-301.

    12. [12]

      [12] Liao Y G,Su Z H,Ye X G,et al. Kinetics of Surface Phase Separation for PMMA/SAN Thin Films Studied by in Situ Atomic Force Microscopy[J]. Macromolecules,2005,38(2):211-215.

    13. [13]

      [13] Liao Y G,Su Z H,Sun Z Y,et al. Dewetting and Phase Behaviors for Ultrathin Films of Polymer Blend[J]. Macromol Rapid Commun,2006,27(5):351-355.

    14. [14]

      [14] Takeno H,Hashimoto T. Intermittency of Droplet Growth in Phase Separation of Off-critical Polymer Mixtures[J]. J Chem Phys,1998,108(3):1225-1233.

    15. [15]

      [15] Furukaua H. A Dynamic Scaling Assumption for Phase Separation[J]. Adv Phys,1985,34(6):703-750.

    16. [16]

      [16] Furukaua H. Scaling and the Small-Wave-Vector Limit of the Form Factor in Phase-Ordering Dynamics[J]. Phys Rev Lett,1988,61(9):1135-1138.

    17. [17]

      [17] You J C,Shi T F,Liao Y G,et al. Temperature Dependence of Surface Composition and Morphology in Polymer Blend Film[J]. Polymer,2008,49(20):4456-4461.

    18. [18]

      [18] Liao Y G,You J C,Li X,et al. Annealing and Quasi-Quenching Processes of Phase-Separated PMMA/SAN Thin Film Studied by in situ AFM with Hot Stage[J]. Chem J Chinese Univ,2005,26(9):1777-1779.

    19. [19]

      [19] Bray A J. Theory of Phase-Ordering Kinetics[J]. Adv Phys,1994,43(3):357-459.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    4. [4]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    5. [5]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    12. [12]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    18. [18]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    19. [19]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    20. [20]

      Zhiqiang XINGJinling LIUMingmin SULei ZHANGLijun YANG . CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181

Metrics
  • PDF Downloads(0)
  • Abstract views(457)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return