Citation: WANG Chengke, WANG Zhenxin. Screening of Cu(Ⅱ) Ion Induced β-Amyloid Peptide Aggregation Inhibitor and Their Molecular Structure Analysis[J]. Chinese Journal of Applied Chemistry, ;2016, 33(7): 834-840. doi: 10.11944/j.issn.1000-0518.2016.07.150375 shu

Screening of Cu(Ⅱ) Ion Induced β-Amyloid Peptide Aggregation Inhibitor and Their Molecular Structure Analysis

  • Corresponding author: WANG Zhenxin, 
  • Received Date: 22 October 2015
    Available Online: 11 December 2015

    Fund Project:

  • It is very important to develop efficient drugs for the cure of Alzheimer's disease. Here, gold nanoparticle probes were utilized to acquire the ability of 13 kinds of compounds to inhibit the Cu2+ induced β-amyloid peptide aggregation. Ten of then were screened as the effective inhibitors. The relationships between the chemical structures and their inhibitory efficiencies were also studied as well. We also used the screened molecules to regulate the morphology changes of Cu2+-β-amyloid aggregates and to decrease the production of H2O2 formed by the interaction of Cu2+ and β-amyloid peptide. This research is significant to the study of Alzheimer's disease.
  • 加载中
    1. [1]

      [1] Bu G. Apolipoprotein E and Its Receptors in Alzheimer's Disease:Pathways, Pathogenesis and Therapy[J]. Nat Rev Neurosci,2009,10(5):333-344.

    2. [2]

      [2] Bertram L,Tanzi R. Thirty Years of Alzheimer's Disease Genetics:The Implications of Systematic Meta-analyses[J]. Nat Rev Neurosci,2008,9(10):768-778.

    3. [3]

      [3] LaFerla F,Green K,Oddo S. Intracellular Amyloid-β in Alzheimer's Disease[J]. Nat Rev Neurosci,2007,8(7):499-509.

    4. [4]

      [4] Faller P,Hureau C,La Penna G. Metal Ions and Intrinsically Disordered Proteins and Peptides:From Cu/Zn Amyloid-β to General Principles[J]. Acc Chem Res,2014,47(8):2252-2259.

    5. [5]

      [5] Rauk A. The Chemistry of Alzheimer's Disease[J]. Chem Soc Rev,2009,382(9):2698-2715.

    6. [6]

      [6] Faller P,Hureau C,Berthoumieu O. Role of Metal Ions in the Self-assembly of the Alzheimer's Amyloid-Β Peptide[J]. Inorg Chem,2013,52(21):12193-12206.

    7. [7]

      [7] Porter M R,Kochi A,Karty J A,et al. Chelation-induced Diradical Formation as an Approach to Modulation of the Amyloid-β Aggregation Pathway[J]. Chem Sci,2015,6(2):1018-1026.

    8. [8]

      [8] Pithadia A S,Lim M H. Metal-associated Amyloid-β Species in Alzheimer's Disease[J]. Curr Opin Chem Biol,2012,16(1):67-73.

    9. [9]

      [9] Lin C J,Huang H C,Jiang Z F. Cu (Ⅱ) Interaction with Amyloid-β Peptide:A Review of Neuroactive Mechanisms in AD Brains[J]. Brain Res Bull,2010,82(5):235-242.

    10. [10]

      [10] Folk D S,Franz K J. A Prochelator Activated by β-Secretase Inhibits Aβ Aggregation and Suppresses Copper-Induced Reactive Oxygen Species Formation[J]. J Am Chem Soc,2010,132(14):4994-4995.

    11. [11]

      [11] Bonda D J,Lee H,Blair J A,et al. Role of Metal Dyshomeostasis in Alzheimer's Disease[J]. Metallomics,2011,3(3):267-270.

    12. [12]

      [12] Huang W,Wei W,Shen Z. Drug-like Chelating Agents:A Potential Lead for Alzheimer's Disease[J]. RSC Adv,2014,4(94):52088-52099.

    13. [13]

      [13] Hindo S S,Mancino A M,Braymer J J,et al. Small Molecule Modulators of Copper-induced Aβ Aggregation[J]. J Am Chem Soc,2009,131(46):16663-16665.

    14. [14]

      [14] Choi J S,Braymer J J,Park S K,et al. Synthesis and Characterization of IMPY Derivatives That Regulate Metal-Induced Amyloid-β Aggregation[J]. Metallomics,2011,3(3):284-291.

    15. [15]

      [15] Cook N P,Torres V,Jain D,et al. Sensing Amyloid-Β Aggregation Using Luminescent Dipyridophenazine Ruthenium (Ⅱ) Complexes[J]. J Am Chem Soc,2011,133(29):11121-11123.

    16. [16]

      [16] Hudson S A,Ecroyd H,Kee T W,et al. The Thioflavin T Fluorescence Assay for Amyloid Fibril Detection Can Be Biased by the Presence of Exogenous Compounds[J]. FEBS J,2009,276(20):5960-5972.

    17. [17]

      [17] Xia N,Liu L,Harrington M G,et al. Regenerable and Simultaneous Surface Plasmon Resonance Detection of Aβ(1-40) and Aβ(1-42) Peptides in Cerebrospinal Fluids with Signal Amplification by Streptavidin Conjugated to an N-Terminus-Specific Antibody[J]. Anal Chem,2010,82(24):10151-10157.

    18. [18]

      [18] Wang C,Wang J,Liu D,et al. Studying Copper (Ⅱ) Ion Induced Interactions of β-Amyloid Peptides Within Living Cells by Gold Nanoparticle Probes[J]. Anal Methods,2010,2(10):1467-1471.

    19. [19]

      [19] Wang C,Liu D,Wang Z,et al. Gold Nanoparticle Based Dot-Blot Immunoassay for Sensitively Detecting Alzheimer's Disease Related beta-Amyloid Peptide[J]. Chem Commun,2012,48(67):8392-8394.

    20. [20]

      [20] Kim J S,Ahn H S,Cho S M,et al. Detection and Quantification of Plasma Amyloid-β by Selected Reaction Monitoring Mass Spectrometry[J]. Anal Chim Acta,2014,840(35):1-9.

    21. [21]

      [21] Jameson L P,Smith N W,Dzyuba S V. Dye-binding Assays for Evaluation of the Effects of Small Molecule Inhibitors on Amyloid(Aβ) Self-assembly[J]. ACS Chem Neurosci,2012,3(11):807-819.

    22. [22]

      [22] Saha K,Agasti S,Kim C,et al. Gold Nanoparticles in Chemical and Biological Sensing[J]. Chem Rev,2012,112(5):2739-2779.

    23. [23]

      [23] Jans H,Huo Q. Gold Nanoparticle-Enabled Biological and Chemical Detection and Analysis[J]. Chem Soc Rev,2012,41(7):2849-2866.

    24. [24]

      [24] Wang C,Wang K,Wang Z. Development of Gold Nanoparticle Based Colorimetric Method for Quantitatively Studying the Inhibitors of Cu2+/Zn2+ Induced β-Amyloid Peptide Assembly[J]. Anal Chim Acta,2015,858(6):42-48.

    25. [25]

      [25] Wang C,Wang Z. Studying the Relationship Between Cell Cycle and Alzheimer's Disease by Gold Nanoparticle Probes[J]. Anal Biochem,2015,489(22):32-37

    26. [26]

      [26] Medinas D B,Toledo J C Jr,Cerchiaro G,et al. Peroxymonocarbonate and Carbonate Radical Displace the Hydroxyl-Like Oxidant in the SOD1 Peroxidase Activity Under Physiological Conditions[J]. Chem Res Toxicol,2009,22(4):639-648.

    27. [27]

      [27] Liochev S I,Fridovich I. Copper, Zinc Superoxide Dismutase and H2O2 Effects of Bicarbonate on Inactivation and Oxidations of NADPH and Urate, and on Consumption of H2O2[J]. J Biol Chem,2002,277(38):34674-34678.

    28. [28]

      [28] Wang C,Wang J,Liu D,et al. Gold Nanoparticle-based Colorimetric Sensor for Studying the Interactions of β-Amyloid Peptide with Metallic Ions[J]. Talanta,2010,80(5):1626-1631.

    29. [29]

      [29] Wang C,Liu D,Wang Z. Resonance Light Scattering as a powerful Tool for sensitive Detection of β-Amyloid Peptide by Gold Nanoparticle Probes[J]. Chem Commun,2011,47(33):9339-9341.

    30. [30]

      [30] Inbar P,Bautista M R,Takayama S A,et al. Assay to Screen for Molecules That Associate with Alzheimer's Related β-Amyloid Fibrils[J]. Anal Chem,2008,80(9):3502-3506.

  • 加载中
    1. [1]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    2. [2]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    5. [5]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    8. [8]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    9. [9]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    10. [10]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    11. [11]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    12. [12]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    14. [14]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    17. [17]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    18. [18]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    19. [19]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    20. [20]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

Metrics
  • PDF Downloads(2)
  • Abstract views(520)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return