Citation:
CAI Bangxin, ZHANG Qiqi, GANG Hongze, LIU Jinfeng, YANG Shizhong, MU Bozhong. Bio-based Zwitterionic Surfactants Derived from Waste Cooking Oil and Their Interfacial Performance[J]. Chinese Journal of Applied Chemistry,
;2016, 33(7): 798-803.
doi:
10.11944/j.issn.1000-0518.2016.07.150361
-
Bio-based surfactants are the one using renewable biomass as the main starting material. Bio-based surfactants, different from petroleum-based surfactants, have attracted more attentions from scientific and industrial fields due to the renewable resource and outstanding surface/interfacial properties. Interfacial tension and dynamic light scattering measurement were utilized to evaluate the interfacial properties and aggregation behavior of bio-based zwitterionic surfactants derived from waste cooking oils in aqueous solution. The bio-based surfactants show excellent interfacial properties in the absence of alkali and remain ultra-low oil-water interfacial tensions at temperatures 50~70 ℃ and pH 7 to 12; the bio-based surfactants solution exhibits good interfacial properties in different simulated oil-water samples; the interfacial properties are not effected by the storage temperature of 50 ℃, -20 ℃ and 4 ℃; the hydrodynamic diameters of the aggregates in different water samples are in the range of 10 to 30 nm and inorganic salt ions have little effect on the size of the aggregates. The bio-based surfactants derived from waste cooking oils are potentital substitutes to petroleum-based surfactants for many applications, especially in enhanced oil recovery.
-
-
-
[1]
[1] Corma A,Iborra S,Velty A. Chemical Rroutes for the Transformation of Biomass into Chemicals[J]. Chem Rev,2007,107(6):2411-2502.
-
[2]
[2] Foley P,Kermanshahi pour A,Beach E S,et al. Derivation and Synthesis of Renewable Surfactants[J]. Chem Soc Rev,2012,41(4):1499-1518.
-
[3]
[3] Gallezot P. Conversion of Biomass to Selected Chemical Products[J]. Chem Soc Rev,2012,41(4):1538-1558.
-
[4]
[4] Johansson I,Svensson M. Surfactants Based on Fatty Acids and Other Natural Hydrophobes[J]. Curr Opin Colloid Interface Sci,2001,6(2):178-188.
-
[5]
[5] Melero J A,Iglesias J,Garcia A. Biomass as Renewable Feedstock in Standard Refinery Units. Feasibility, Opportunities and Challenges[J]. Energy Environ Sci,2012,5(6):7393-7420.
-
[6]
[6] Climent M J,Corma A,Iborra S. Conversion of Biomass Platform Molecules into Fuel Additives and Liquid Hydrocarbon Fuels[J]. Green Chem,2014,16(2):516-547.
-
[7]
[7] FANG Xiangchen. Bio-Based Chemicals and Anaylysis of Their Competitive Edge in Chemical Industry[J]. Petrochem Technol,2013,42(10):1069-1074(in Chinese).方向晨. 生物基化学品及其竞争力分析[J]. 石油化工,2013,42(10):1069-1074.
-
[8]
[8] WANG Jie,NIE Rongchun,XU Chuyang. Application of Bio-Surfactants[J]. Fine Spec Chem,2006,14(5):1-3(in Chinese).王杰,聂荣春,徐初阳. 生物基表面活性剂的应用[J]. 精细与专用化学品,2006,14(5):1-3.
-
[9]
[9] Lin C S K,Pfaltzgraff L A,Herrero-Davila L,et al. Food Waste as a Valuable Resource for the Production of Chemicals, Materials and Fuels. Current Situation and Global Perspective[J]. Energy Environ Sci,2013,6(2):426-464.
-
[10]
[10] Sreenu M,Rao B V S K,Prasad R B N,et al. Synthesis, Surface and Biological Properties of Sodium N-Acyl Isoleucines[J]. Euro J Lipid Sci Technol,2014,116(2):193-206.
-
[11]
[11] Rajabi F,Luque R. An Efficient Renewable-Derived Surfactant for Aqueous Esterification Reactions[J]. RSC Adv,2014,4(10):5152-5155.
-
[12]
[12] Chu Z L,Feng Y J. Vegetable-Derived Long-Chain Surfactants Synthesized via A “Green” Route[J]. ACS Sustain Chem Eng,2013,1(1):75-79.
-
[13]
[13] Miao S D,Wang P,Su Z G,et al. Vegetable-Oil-Based Polymers as Future Polymeric Biomaterials[J]. Acta Biomater,2014,10(4):1692-1704.
-
[14]
[14] Biermann U,Bornscheuer U,Meier M A R,et al. Oils and Fats as Renewable Raw Materials in Chemistry[J]. Angew Chem Int Ed,2011,50(17):3854-3871.
-
[15]
[15] Xu Q Y,Liu Z S,Nakajima M,et al. Characterization of a Soybean Oil-Based Biosurfactant and Evaluation of Its Ability to Form Microbubbles[J]. Bioresour Technol,2010,101(10):3711-3717.
-
[16]
[16] Wu M H,Wan L Z,Zhang Y Q. A Novel Sodium N-Fatty Acyl Amino Acid Surfactant Using Silkworm Pupae as Stock Material[J]. Sci Rep,2014,4:4428(DOI:10.1038/srep04428).
-
[17]
[17] Zhang Q Q,Cai B X,Xu W J,et al. The Rebirth of Waste Cooking Oil to Novel Bio-Based Surfactants[J]. Sci Rep,2015,5:09971(DOI:10.1038/srep09971).
-
[18]
[18] Zhang Q Q,Cai B X,Gang H Z,et al. A Family of Novel Bio-Based Zwitterionic Surfactants Derived from Oleic Acid[J]. RSC Adv,2014,4(72):38393-38396.
-
[19]
[19] Wang L Y,Duan R Y,Liu J F,et al. Molecular Analysis of the Microbial Community Structures in Water-Flooding Petroleum Reservoirs with Different Temperatures[J]. Biogeosciences,2012,9(11):4645-4659.
-
[20]
[20] Chen W Y,Huang H M,Lin C C,et al. Effect of Temperature on Hydrophobic Interaction Between Proteins and Hydrophobic Adsorbents: Studies by Isothermal Titration Calorimetry and The Van't Hoff Equation[J]. Langmuir,2003,19(22):9395-9403.
-
[21]
[21] Qiao W H,Li J,Zhu Y Y,et al. Interfacial Tension Behavior of Double Long-Chain 1,3,5-Triazine Surfactants for Enhanced Oil Recovery[J]. Fuel,2012,96(0):220-225.
-
[22]
[22] Ye Z B,Zhang F X,Han L J,et al. The Effect of Temperature on the Interfacial Tension between Crude Oil and Gemini Surfactant Solution[J]. Colloids Surf A,2008,322(1/2/3):138-141.
-
[23]
[23] Kamenka N,Chorro M,Chevalier Y,et al. Aqueous Solutions of Zwitterionic Surfactants with Varying Carbon Number of The Intercharge Group.2.Ion Binding by The Micelles[J]. Langmuir,1995,11(11):4234-4240.
-
[1]
-
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[3]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[4]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[5]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[6]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[7]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[8]
Yanyang Li , Zongpei Zhang , Kai Li , Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020
-
[9]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[10]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[11]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[12]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[13]
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
-
[14]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[15]
Meng Lin , Heng Zhang , Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053
-
[16]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[17]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
-
[18]
Yuhui Yang , Jintian Luo , Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056
-
[19]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[20]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(415)
- HTML views(34)