Citation: LANG Wuke, TANG Yin, SUN Jing. Thermodynamics Analysis of High Concentration F--Al3+ System for Fluorine Determination[J]. Chinese Journal of Applied Chemistry, ;2016, 33(7): 848-854. doi: 10.11944/j.issn.1000-0518.2016.07.150354 shu

Thermodynamics Analysis of High Concentration F--Al3+ System for Fluorine Determination

  • Corresponding author: LANG Wuke, 
  • Received Date: 9 October 2015
    Available Online: 1 February 2016

    Fund Project:

  • The species and equilibrium constants were assigned for F--Al3+ system in Visual MINTEQ software. The similarity between the simulated titration curves and experimental ones, and the accordance confirms this assignment. The masking effect of sodium hydroxide and masking mechanism was investigated according to the equilibrium distribution simulation of F-(0.01/0.1 mol/L)-Al3+(0.02 mol/L)-OH- system. Although the species and aluminum masking mechanism are different in these two systems, aluminum can be masked efficiently at pH 11~12. The larger discrepancy between the simulated titration curve and the experimental curve in the latter system is due to the slower reaction rate of the latter system. Furthermore, the permissible aluminum concentration at pH 11~12 was obtained by simulation. Considering the interference of OH- to fluoride ion selective electrode, pH is limited to 11.5±0.2 for the determination of fluoride at 0.01~0.1 mol/L, and the maximum aluminum concentration masked at pH 11.5 is 0.02 mol/L. This method suits for the determination of high F concentration in the F-Al system. The error analysis indicates that the standard calibration curve method is more accurate than standard addition method if the potential error is larger than the error of electrode slope constant.
  • 加载中
    1. [1]

      [1] Bebeshko G I. Thermodynamic Analysis of Fluorine-Metal-Water Systems for Improving the Selectivity of the Potentiometric Determination of Fluorine in Raw Minerals[J]. J Anal Chem,2004,59(6):528-531.

    2. [2]

      [2] Zhang Le. Fluorine Determination in Phosphorite[J]. Phosphate Compos Fertilizer,2007,22(1):64-65(in Chinese).张乐. 磷矿中氟含量的测定[J]. 磷肥与复肥,2007,22(1):64-65.

    3. [3]

      [3] Bebeshko G I,Karpova Yu A. Determination of Fluorine in Inorganic Substances(Overview)[J]. Inorg Mater,2012,48(15):1335-1340.

    4. [4]

      [4] Danilevich T I,Andreev P A,Abramov V V. Ionometric Determination of Fluorine in Cryolite and Aluminum Fluoride[J]. Glass Ceram,1982,39(5):259-260.

    5. [5]

      [5] Borjigin S,Ashimura Y,Yoshioka T,et al. Determination of Fluoride Using Ion-selective Electrodes in the Presence of Aluminum[J]. Anal Sci,2009,25(12):1437-1443.

    6. [6]

      [6] Borjigin S,Yoshioka T,Mizoguchi T. Determination of Total Fluoride in Boron-containing Solutions[J]. Anal Sci,2010,26(5):603-606.

    7. [7]

      [7] Oliver R T,Clayton A G. Direct Determination of Fluoride in Miscellaneous Fluoride Materials with the Orion Fluoride Electrode[J]. Anal Chim Acta,1970,51(3):409-415

    8. [8]

      [8] Martin R B. Ternary Hydroxide Complexes in Neutral Solutions of A13+ and F-[J]. Biochem Biophys Res Commun,1988,155(3):1194-1200

    9. [9]

      [9] Lisbona D F,Steel K M. Recovery of Fluoride Values from Spent Pot-lining:Precipitation of an Aluminium Hydroxyfluoride Hydrate Product[J]. Sep Purif Technol,2008,61(2):182-192.

    10. [10]

      [10] Gustafsson J P. Visual MINTEQ version 3.0,http://hem. bredband. net /b108693/download.html,Posted on 2012.01.20.

    11. [11]

      [11] Datong H,Tanaka M,Shigenobu P. Chemistry of Solution Reaction[M]. YU Kaiyu Trans. Beijing:Higher Education Press,1985:223(in Chinese)(日)大滝仁志,田中元治,舟桥重信著. 俞开钰译,溶液反应的化学[M]. 北京:高等教育出版社,1985:223

    12. [12]

      [12] Bebeshko G I,Nesterina E M,Burtseva S N. Effects of the Ionic Strength and Liquid-electrode Potential in the Ionometric Determination of Fluoride and Iodide Ions in Waters and Brines[J]. Ind Lab,2000,66(12):776-778.

    13. [13]

      [13] TANG Hongxiao. Inorganic Macromolecule Flocculation Theory and Flocculant[M]. Beijing:China Architecture & Building Press,2006:39(in Chinese).汤鸿霄. 无机高分子絮凝理论与絮凝剂[M]. 北京:中国建筑工业出版社,2006:39.

    14. [14]

      [14] Plankey B J,Patterson H H,Cronan C S. Kinetics of Aluminum Fluoride Complexation in Acidic Waters[J]. Environ Sci Technol,1986,20(2):160-165.

    15. [15]

      [15] Liu R P,Gong W X,Lan H C,et al. Defluoridation by Freshly Prepared Aluminum Hydroxides[J]. Chem Eng J,2011,175(1):144-149.

    16. [16]

      [16] Bernard Sanjuan,Gil Michard. Aluminum Hydroxide Solubility in Aqueous Solutions Containing Fluoride Ions at 50 ℃[J]. Geochim Cosmochim Acta,1987,51(7):1823-1831.

    17. [17]

      [17] Tanikawa S,Kirihara H,Shiraishi N,et al. Masking Ability of Various Comlexing Agents for Aluminum in the Fluorine Determination with a Fluoride Ion-selective Electrode[J]. Anal Lett,1975,8(12):879-883.

    18. [18]

      [18] Lang W K,Zhang W J,Tang Y,et al. Determination of Boron Trifluoride in Boron Trifluoride Complex by Fluoride Ion Selective Electrode[J]. Trans Tianjin Univ,2016,22(1):83-88.

    19. [19]

      [19] XIE Shengluo. Error Analysis of Ion Selective Electrode[J]. Chem Sens,1983,(1):87-96(in Chinese).谢声洛. 离子选择电极分析测量的误差问题[J]. 化学传感器,1983,(1):87-96

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    7. [7]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    15. [15]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    16. [16]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    17. [17]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

Metrics
  • PDF Downloads(1)
  • Abstract views(397)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return