Citation: HE Qiangfang, WU Yinghong, CAI Zhijian, XIE Wang. Synthesis of Fluorescent Cross-linked Stabilized Polymeric Micelles Based on Salicylidene Schiff Base/Zn2+ Complexes and Sensor for Cu2+ Detection[J]. Chinese Journal of Applied Chemistry, ;2016, 33(6): 701-709. doi: 10.11944/j.issn.1000-0518.2016.06.150413 shu

Synthesis of Fluorescent Cross-linked Stabilized Polymeric Micelles Based on Salicylidene Schiff Base/Zn2+ Complexes and Sensor for Cu2+ Detection

  • Corresponding author: HE Qiangfang, 
  • Received Date: 24 November 2015
    Available Online: 28 December 2015

    Fund Project:

  • A well-defined polymer with pendant salicylaldehyde groups(PHVB) was achieved by reversible addition-fragmentation chain transfer(RAFT) polymerization with S-1-dodecyl-S'-(α,α'-dimethyl-α"-acetic acid) trithiocarbonate as the RAFT agent and a salicylaldehyde-functionalized vinyl monomer, 2-hydroxy-5-vinylbenzaldehyde(HVB) in THF at 65℃. The resulting well-defined polymer with pendant salicylaldehyde groups can react directly with monoamine-terminated PEG(PEG-NH2, number-average relative molecular mass 2000 g/mL, 0.5 stoichiometric number of the -CHO group in PolyHVB) to afford an amphiphilic graft copolymer bearing a pendant salicylidene Schiff base PHVB-graft-PEG with 50% grafting density. These new polymers were characterized by GPC and 1HNMR. Owing to the presence of hydrophilic PEG pendants, PHVB-graft-PEG is capable of self-assembling into nano-sized micelles with salicylidene Schiff base functioned cores, PEG coronas in ethanol. Coordination of the pre-assembled PHVB-graft-PEG micelles with Zn(OAc)2 will endow the polymeric micelles with fluorescence features, and simultaneously the resulting luminescent micelles may be stabilized by ionic cross-linking in consequence of the complex reaction at the core. Thus, the luminescence properties and form of the obtained micelles were investigated by UV-Vis spectra(UV-Vis), fluorescence spectra(FLL), dynamic light scattering(DLS), transmission electron microscopy(TEM).After removing ethanol by drying, the resultant Zn2+ coordinated particles can be re-dispersed readily in water or common organic solvent to form a micellar solution, which display blue fluorescence with maximum emission peak around 460 nm, indicating the same aggregate size(nearly 100 nm) as before re-dispersion. The obtained luminescent nanoparticles can be used as a highly selective fluorescent probe for Cu2+ ion over other metal ions such as Cd2 +, Mg2+, Ni2+, Pb2+, Ca2+, Hg2+, Al3+, Mn2+ in aqueous solution, and exhibit a linear range of 0~50 μmol/L and detection limit of 0.05 μmol/L Cu2+, respectively.
  • 加载中
    1. [1]

      [1] Plaquet A,Guillaume M,Champagne B,et al.Investigation on the Second-order Nonlinear Optical Responses in the Ketoenol Equilibrium of Anil Derivatives[J].J Phys Chem C,2008,112(14):5638-5645.

    2. [2]

      [2] Baleizão C,Garcia H.Chiral Salen Complexes:An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts[J].Chem Rev,2006,106(9):3987-4043.

    3. [3]

      [3] Lahiri D,Majumdar R,Mallick D,et al.Remarkable Photocytotoxicity in Hypoxic HeLa cells by a Dipyridophenazine Copper (Ⅱ) Schiff Base Thiolate[J].J Inorg Biochem,2011,105(8):1086-1094.

    4. [4]

      [4] Cimerman Z,Galic N,Bosner B.The Schiff Bases of Salicylaldehyde and Aminopyridines as Highly Sensitive Analytical Reagent[J].Anal Chim Acta,1997,343(1/2):145-153.

    5. [5]

      [5] Sytnik A,Del Valle J C.Steady-state and Time-resolved Study of the Proton-transfer Fluorescence of 4-Hydroxy-5-azaphenanthrenein Model Solvents and in Complexes with Human Serum Albumin[J].J Phys Chem,1995,99(34):13028-13032.

    6. [6]

      [6] Zapata F,Caballero A,Espinosa A,et al.A Simple but Effective Ferrocene Derivative as a Redox,Colorimetric,and luorescent Receptor for Highly Selective Recognition of Zn2+ Ions[J].Org Lett,2007,9(12):2385-2388.

    7. [7]

      [7] Li N,Xiang Y,Chen X,et al.Salicylaldehyde Hydrazones as Fluorescent Probes for Zinc Ion in Aqueous Solution of Physiological pH[J].Talanta,2009,79(2):327-332.

    8. [8]

      [8] Xu Z,Yoon J,Spring D R.Fluorescent Chemosensors for Zn2+[J].Chem Soc Rev,2010,39(6):1996-2006.

    9. [9]

      [9] Wang L N,Qin W W,Tang X L,et al.Development and Applications of Fluorescent Indicators for Mg2+ and Zn2+[J].J Phys Chem A,2011,115(9):1609-1616.

    10. [10]

      [10] Safin D A,Babashkina M G,Garcia Y.Crown Ether-containing Schiff Base as a Highly Efficient "turn-on" Fluorescent Sensor for Determination and Separation of Zn2+ in Water[J].Dalton Trans,2013,42(6):1969-1972.

    11. [11]

      [11] Khatua S,Choi S H,Lee J,et al.Highly Selective Fluorescence Detection of Cu2+ in Water by Chiral Dimeric Zn2+ Complexes Through Direct Displacement[J].Inorg Chem,2009,48(5):1799-1801.

    12. [12]

      [12] Khatua S,Kang J,Churchill D G.Direct Dizinc Displacement Approach for Efficient Detection of Cu2+ in Aqueous Media:Acetate Versus Phenolate Bridging Platforms[J].New J Chem,2010,34(6):1163-1169.

    13. [13]

      [13] Gou C,Qin S H,Wu H Q,et al.A HighlySelective Chemosensor for Cu2+ and Al3+ in Two Different Ways Based on Salicylaldehyde Schiff[J].Inorg Chem Commun,2011,14(10):1622-1625.

    14. [14]

      [14] Sinha S,Koner R R,Kumar S,et al.Imine Containing Benzophenone Scaffold as an Efficient Chemical Device to Detect Selectively Al3+[J].RSC Adv,2013,3(2):345-351.

    15. [15]

      [15] Upadhyay K K,Kumar A.Pyrimidine Based Highly Sensitive Fluorescent Receptor for Al3+ Showing Dual Signalling Mechanism[J].Org Biomol Chem,2010,8(21):4892-4897.

    16. [16]

      [16] Zhou L,Feng Y,Cheng J H,et al.Simple,Selective,and Sensitive Colorimetric and Ratiometric Fluorescence/Phosphorescence Probes for Platinum (Ⅱ) Based on Salen-type Schiff Bases[J].RSC Adv,2012,2(28):10529-10536.

    17. [17]

      [17] Xu Y,Meng J,Meng L X,et al.A Highly Selective Fluorescence-Based Polymer Sensor Incorporating an (R,R)-Salen Moiety for Zn2+ Detection[J].Chem-Eur J,2010,16(43):12898-12903.

    18. [18]

      [18] Song F Y,Ma X,Hou J L,et al.(R,R)-Salen/salan-based Polymer Fluorescence Sensors for Zn2+ Detection[J].Polymer,2011,52(26):6029-6036.

    19. [19]

      [19] Hou J L,Song F Y,Wang L,et al.In Situ Generated 1:1 Zn (Ⅱ)-containing Polymer Complex Sensor for Highly Enantioselective Recognition of N-Boc-protected Alanine[J].Macromolecules,2012,45(19):7835-7842.

    20. [20]

      [20] Li J F,Wu Y Z,Song F Y,et al.A Highly Selective and Sensitive Polymer-based OFF-ON Fluorescent Sensor for Hg2+ Detection Incorporating Salen and Perylenyl Moieties[J].J Mater Chem,2012,22(2):478-482.

    21. [21]

      [21] Song F Y,Wei G,Wang L,et al.Salen-based Chiral Fluorescence Polymer Sensor for Enantioselective Recognition of α-Hydroxyl Carboxylic Acids[J].J Org Chem,2012,77(10):4759-4764.

    22. [22]

      [22] Xu Y,Zheng L F,Huang X B,et al.Fluorescence Sensors Based on Chiral Polymer for Highly Enantioselective Recognition of Phenylglycinol[J].Polymer,2010,51(5):994-997.

    23. [23]

      [23] Cho Y S,Ihn C S,Lee H K,et al.Synthesis and Properties of Ruthenium-Coordinated Block Copolymers of 2-Vinylpyridine and Carbazole Derivatives[J].Macromol Rapid Commun,2001,22(15):1249-1253.

    24. [24]

      [24] Smith A P,Fraser C L.Luminescent Polymeric Ruthenium Complexes with Polystyrene-b-poly (methyl methacrylate) Macroligands:The Sequential Activation of Initiator Sites for Blocks Generated by Parallel Polymerization Mechanisms[J].J Polym Sci Part A:Polym Chem,2002,40(23):4250-4255.

    25. [25]

      [25] Cong Y,Fu J,Cheng Z,et al.Self-organization and Luminescent Properties of Nanostructured Europium (Ⅲ)-block Copolymer Complex Thin Films[J].J Polym Sci Part B:Polym Phys,2005,43(16):2181-2189.

    26. [26]

      [26] Chen B,Sleiman H F.Ruthenium Bipyridine-Containing Polymers and Block Copolymers via Ring-Opening Metathesis Polymerization[J].Macromolecules,2004,37(16):5866-5872.

    27. [27]

      [27] Wulff G,Akelah A.Synthesis of 5-Vinylsalicylaldehyde and a Simplified Synthesis of Some Divinyl Derivatives[J].Makromol Chem,1979,179:2647-2651.

    28. [28]

      [28] Lai J T,Filla D,Shea R.Functional Polymers from Novel Carboxyl-terminated Trithiocarbonates as Highly Efficient RAFT Agents[J].Macromolecules,2002,35(18):6754-6756.

    29. [29]

      [29] Wang Y,Goethals E J,Du Prez F E.Association Behavior between End-Functionalized Block Copolymers PEO-PPO-PEO and Poly (acrylic acid)[J].Macromol Chem Phys,2004,205(13):1774-1781.

    30. [30]

      [30] Xin Y,Yuan J Y.Schiff's Base as a Stimuli-responsive Linker in Polymer Chemistry[J].Polym Chem,2012,3(11):3045-3055.

    31. [31]

      [31] Zhao L Y,Sui D,Chai J,et al.Digital Logic Circuit Based on a Single Molecular System of Salicylidene Schiff Base[J].J Phys Chem B,2006,110(48):24299-24304.

    32. [32]

      [32] Wu J,Liu W,Zhuang X,et al.Fluorescence Turn on of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on[JG (]C[ZJLX,Y]N[JG)]Isomerization[J].Org Lett,2007,9(1):33-36.

  • 加载中
    1. [1]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    16. [16]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(0)
  • Abstract views(235)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return