Citation: YU Zonglong, JIA Chunxiao, LU Xin, HAN Haigang, XIN Bingwei. Synthesis of Ionic Liquid@TiO2 Nanocomposites and Their Photocatalytic Performance[J]. Chinese Journal of Applied Chemistry, ;2016, 33(4): 459-465. doi: 10.11944/j.issn.1000-0518.2016.04.150269 shu

Synthesis of Ionic Liquid@TiO2 Nanocomposites and Their Photocatalytic Performance

  • Corresponding author: JIA Chunxiao,  XIN Bingwei, 
  • Received Date: 28 July 2015
    Available Online: 19 November 2015

    Fund Project:

  • IL@TiO2 nanocomposites were synthesized by grafting ionic liquids(ILs) onto the surface of TiO2 via —Si—O— covalent bond. The prepared nanocomposites were acharacterized by IR, thermal gravity-differential analysis and elemental analysis. [C8tespim]Br@TiO2([C8tespim]:N-3-triethoxysilypropyl-4,5-dihydroimidazole) can catalyze the degradation of methyl orange to almost colourless after being illuminated by ultraviolet light for 60 min. The superior performance of prepared nanocomposites compared to that of TiO2 nanopaticles suggests that anion-exchange can tailor the photocatalytic activity, and the activity order is [C8tespim]Br@TiO2< [C8tespim]PF6@TiO2< [C8tespim]Tf2N@TiO2(Tf2N:bis[(trifluoromethyl)sulfonyl]imide).
  • 加载中
    1. [1]

      [1] Liu K,Cao M,Jiang L,et al. Bio-Inspired Titanium Dioxide Materials with Special Wettability and Their Applications[J]. Chem Rev,2014,114(19):10044-10094.

    2. [2]

      [2] Zhang X,Jin M,Liu Z,et al. Preparation and Photocatalytic Wettability Conversion of TiO2-Based Superhydrophobic Surfaces[J]. Langmuir,2006,22(23):9477-9479.

    3. [3]

      [3] Jutz F,Andanson J,Baiker A. Ionic Liquids and Dense Carbon Dioxide:A Beneficial Biphasic System for Catalysis[J]. Chem Rev,2011,111(2):322-353.

    4. [4]

      [4] Xin B,Hao J. Reversibly Switchable Wettability[J]. Chem Soc Rev,2010,39(2):769-782.

    5. [5]

      [5] Ye Q,Gao T,Wan F,et al. Grafting Poly(Ionic Liquid) Brushes for Anti-Bacterial and Anti-Biofouling Applications[J]. J Mater Chem,2012,22(26):13123-13131.

    6. [6]

      [6] Stepnowski P,Zaleska A. Comparison of Different Advanced Oxidation Processes for the Degradation of Room Temperature Ionic Liquids[J]. J Photochem Photobiol A,2005,170(1):45-50.

    7. [7]

      [7] CHANG Rui,LI Chunxi,MENG Hong,et al. Degradation of Imidazolium-Based Ionic Liquids with A Combination of Photocatalysis and Biodegradation[J]. Chinese J Chem Eng,2011,5(9):1950-1954(in Chinese).常睿,李春喜,孟洪,等. 光催化法与生物法结合降解咪哇类离子液体[J]. 环境工程学报,2011,5(9):1950-1954.

    8. [8]

      [8] Zhai Y,Gao Y,Liu F,et al. Synthesis of Nanostructured Tio2 Particles in Room Temperature Ionic Liquid and Its Photocatalytic Performance[J]. Mater Lett,2007,61(28):5056-5058.

    9. [9]

      [9] Zhai Y,Zhang Q,Liu F,et al. Synthesis of Nanostructure Rutile Tio2 in A Carboxyl-Containing Ionic Liquid[J]. Mater Lett,2008,62(30):4563-4565.

    10. [10]

      [10] Wu Y,Guan W,Lin S. Microwave Assisted Preparation and Characterization of Ionic Liquid [Bmim]PF6 and Synthesis and Characterization of Titanium Dioxide Using [Bmim]PF6 as Medium[J]. Adv Mater Res,2011,183/184/185(5):1662-1666.

    11. [11]

      [11] XIA Xinghui,YUN Ying,LUO Juan. Effects of Anions on Rates of Photocatalytic Degradation for Surfactant[J]. J Beijing Normal Univ(Nat Sci),2000,36(1):127-131(in Chinese).夏星辉,云影,雒娟. 水环境中阴离子对表面活性剂光催化降解的影响[J]. 北京师范大学学报(自然科学版),2000,36(1):127-131.

    12. [12]

      [12] Itoh H,Naka K,Chujo Y. Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cation[J]. J Am Chem Soc,2004,126(10):3026-3027.

    13. [13]

      [13] Dieter K M,Dymek C J,Heimer N E,et al. Ionic Structure and Interactions in 1-Methyl-3-ethylimidazolium Chloride-AlCl3 Molten Salts[J]. J Am Chem Soc,1998,110(12):2722-2726.

    14. [14]

      [14] Nishida T,Tashiro Y,Yamamoto M. Physical and Electrochemical Properties of 1-Alkyl-3-Methylimidazolium Tetrafluoroborate for Electrolyte[J]. J Fluorine Chem,2003,120(2):135-141.

    15. [15]

      [15] Zhang Y R,Wan J,Ke Y Q. A Novel Approach of Preparing TiO2 Films at Low Temperature and Its Application in Photocatalytic Degradation of Methyl Orange[J]. J Hazard Mater,2010,177(1/2/3):750-754.

    16. [16]

      [16] Priya D,Modak J,Raichur A. LbL Fabricated Poly(Styrene Sulfonate)/TiO2 Multilayer Thin Films for Environmental Applications[J]. ACS Appl Mater Interfaces,2009,1(11):2684-2693.

    17. [17]

      [17] HAN Fei. The Preparation of Modified TiO2 and Its Photoehemical Catalysis Activeness Research of Cyanic Wastewater[D]. Xi'an:Chang'an University,2011(in Chinese).韩飞. 改性TiO2光催化剂的制备及对含氰废水的光催化研究[D]. 西安:长安大学,2011.

    18. [18]

      [18] QI Lifang. Preparation and Photocatalytic H2-production Performance of TiO2 Nanosheets[D]. Wuhan:Wuhan University of Technology,2012(in Chinese).亓丽芳. 二氧化钛纳米片的制备及光催化产氢性能研究[D]. 武汉:武汉理工大学,2012.

  • 加载中
    1. [1]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    2. [2]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    5. [5]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    8. [8]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    9. [9]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

Metrics
  • PDF Downloads(2)
  • Abstract views(303)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return