Citation: ZHU Zhaoqiang, DU Weimin, GUO Wei, ZHU Wenjuan. Research Progress of Preparation and Application of Transition Metal Ternary Compounds in Supercapacitors[J]. Chinese Journal of Applied Chemistry, ;2016, 33(3): 267-276. doi: 10.11944/j.issn.1000-0518.2016.03.150273 shu

Research Progress of Preparation and Application of Transition Metal Ternary Compounds in Supercapacitors

  • Corresponding author: DU Weimin, 
  • Received Date: 3 August 2015
    Available Online: 9 September 2015

    Fund Project:

  • Due to the excellent physical and chemical properties, transition metal ternary compounds have attracted more and more attention and were applied in electronics, optics and optoelectronic devices, etc. In this paper we summarized the research progress on the preparation and application of electrochemical supercapacitors of transition metal ternary compounds during recent years. Meanwhile, the electrochemical properties, the advantages and disadvantages, and prospects of supercapacitors were discussed.
  • 加载中
    1. [1]

      [1] Chen H,Cong T N,Yang W,et al. Progress in Electrical Energy Storage System:A Critical Review[J]. Prog Nat Sci,2009,19(3):291-312.

    2. [2]

      [2] Liu B,Tan D,Wang X,et al. Flexible, Planar-Integrated, All-Solid-State Fiber Supercapacitors with an Enhanced Distributed-Capacitance Effect[J]. Small,2013,9(11):1998-2004.

    3. [3]

      [3] Arico A S,Bruce P,Scrosati B,et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices[J]. Nat Mater,2005,4(5):366-377.

    4. [4]

      [4] Liu C,Li F,Ma L P,et al. Advanced Materials for Energy Storage[J]. Adv Mater,2010,22(8):E28-E62.

    5. [5]

      [5] Li L,Loveday D C,Mudigonda D S K,et al. Effect of Electrolytes on Performance of Electrochemical Capacitors Based on Poly[3-(3,4-difluorophenyl)thiophene][J]. J Electrochem Soc,2002,149(9):A1201-A1207.

    6. [6]

      [6] Sharma R K,Rastogi A C,Desu S B. Manganese Oxide Embedded Polypyrrole Nanocomposites for Electrochemical Supercapacitor[J]. Electrochim Acta,2008,53(26):7690-7695.

    7. [7]

      [7] Deng W,Lan W,Sun Y,et al. Porous CoO Nanostructures Grown on Three-Dimension Graphene Foams for Supercapacitors Electrodes[J]. Appl Surf Sci,2014,305:433-438.

    8. [8]

      [8] Kim Y K,Cha S I,Hong S H. Nanoporous Cobalt Foam and A Co/Co(OH)2 Core-Shell Structure for Electrochemical Applications[J]. J Mater Chem A,2013,1(34):9802-9808.

    9. [9]

      [9] Singh A K,Sarkar D,Khan G G,et al. Hydrogenated NiO Nanoblock Architecture for High Performance Pseudocapacitor[J]. ACS Appl Mater Interfaces,2014,6(7):4684-4692.

    10. [10]

      [10] Wang D,Kong L B,Liu M C,et al. Amorphous Ni P Materials for High Performance Pseudocapacitors[J]. J Power Sources,2015,274:1107-1113.

    11. [11]

      [11] Chen L Y,Hou Y,Kang J L,et al. Toward the Theoretical Capacitance of RuO2 Reinforced by Highly Conductive Nanoporous Gold[J]. Adv Energy Mater,2013,3(7):851-856.

    12. [12]

      [12] Li G R,Wang Z L,Zheng F L,et al. ZnO@MoO3 Core/Shell Nanocables:Facile Electrochemical Synthesis and Enhanced Supercapacitor Performances[J]. J Mater Chem,2011,21(12):4217-4221.

    13. [13]

      [13] Zhu J,Jiang J,Liu J,et al. Direct Synthesis of Porous NiO Nanowall Arrays on Conductive Substrates for Supercapacitor Application[J]. J Solid State Chem,2011,184(3):578-583.

    14. [14]

      [14] Ren B,Fan M,Liu Q,et al. Hollow NiO Nanofibers Modified by Citric Acid and the Performances as Supercapacitor Electrode[J]. Electrochim Acta,2013,92:197-204.

    15. [15]

      [15] Cao F,Pan G X,Xia X H,et al. Synthesis of Hierarchical Porous NiO Nanotube Arrays for Supercapacitor Application[J]. J Power Sources,2014,264:161-167.

    16. [16]

      [16] Zhu Y G,Wang Y,Shi Y,et al. CoO Nanoflowers Woven by CNT Network for High Energy Density Flexible Micro-Supercapacitor[J]. Nano Energy,2014,3:46-54.

    17. [17]

      [17] Deng W,Sun Y,Su Q,et al. Porous CoO Nanobundles Composited with 3D Graphene Foams for Supercapacitors Electrodes[J]. Mater Lett,2014,137:124-127.

    18. [18]

      [18] Du H,Jiao L,Cao K,et al. Polyol-Mediated Synthesis of Mesoporous α-Ni(OH)2 with Enhanced Supercapacitance[J]. ACS Appl Mater Interfaces,2013,5(14):6643-6648.

    19. [19]

      [19] Lu Z,Chang Z,Zhu W,et al. Beta-Phased Ni(OH)2 Nanowall Film with Reversible Capacitance Higher than Theoretical Faradic Capacitance[J]. Chem Commun,2011,47(34):9651-9653.

    20. [20]

      [20] Li L,Xu J,Lei J,et al. A One-Step, Cost-Effective Green Method to in Situ Fabricate Ni(OH)2 Hexagonal Platelets on Ni Foam as Binder-Free Supercapacitor Electrode Materials[J]. J Mater Chem A,2015,3(5):1953-1960.

    21. [21]

      [21] Patil U M,Nam M S,Sohn J S,et al. Controlled Electrochemical Growth of Co(OH)2 Flakes on 3D Multilayered Graphene Foam for High Performance Supercapacitors[J]. J Mater Chem A,2014,2(44):19075-19083.

    22. [22]

      [22] Mondal C,Ganguly M,Manna P K,et al. Fabrication of Porous β-Co(OH)2 Architecture at Room Temperature:A High Performance Supercapacitor[J]. Langmuir,2013,29(29):9179-9187.

    23. [23]

      [23] Zhang Z,Wang Y,Tan Q,et al. Facile Solvothermal Synthesis of Mesoporous Manganese Ferrite(MnFe2O4) Microspheres as Anode Materials for Lithium-Ion Batteries[J]. J Colloid Interface Sci,2013,398:185-192.

    24. [24]

      [24] Liu M C,Kong L B,Lu C,et al. Facile Fabrication of CoMoO4 Nanorods as Electrode Material for Electrochemical Capacitors[J]. Mater Lett,2013,94:197-200.

    25. [25]

      [25] Veerasubramani G K,Krishnamoorthy K,Radhakrishnan S,et al. Synthesis, Characterization, and Electrochemical Properties of CoMoO4 Nanostructures[J]. Int J Hydrogen Energ,2014,39(10):5186-5193.

    26. [26]

      [26] Xia X,Lei W,Hao Q,et al. One-Step Synthesis of CoMoO4/Graphene Composites with Enhanced Electrochemical Properties for Supercapacitors[J]. Electrochim Acta,2013,99:253-261.

    27. [27]

      [27] Xu X,Shen J,Li N,et al. Microwave-Assisted Synthesis of Graphene/CoMoO4 Nanocomposites with Enhanced Supercapacitor Performance[J]. J Alloy Compd,2014,616:58-65.

    28. [28]

      [28] Xiong W,Gao Y,Wu X,et al. Composite of Macroporous Carbon with Honeycomb-Like Structure from Mollusc Shell and NiCo2O4 Nanowires for High-Performance Supercapacitor[J]. ACS Appl Mater Interfaces,2014,6(21):19416-19423.

    29. [29]

      [29] Du J,Zhou G,Zhang H,et al. Ultrathin Porous NiCo2O4 Nanosheet Arrays on Flexible Carbon Fabric for High-Performance Supercapacitors[J]. ACS Appl Mater Interfaces,2013,5(15):7405-7409.

    30. [30]

      [30] Lei Y,Li J,Wang Y,et al. Rapid Microwave-Assisted Green Synthesis of 3D Hierarchical Flower-Shaped NiCo2O4 Microsphere for High-Performance Supercapacitor[J]. ACS Appl Mater Interfaces,2014,6(3):1773-1780.

    31. [31]

      [31] Kandalkar S G,Lee H M,Seo S H,et al. Preparation and Characterization of the Electrodeposited Ni-Co Oxide Thin Films for Electrochemical Capacitors[J]. Korean J Chem Eng,2011,28(6):1464-1467.

    32. [32]

      [32] Chen W,Xia C,Alshareef H N. One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors[J]. ACS Nano,2014,8(9):9531-9541.

    33. [33]

      [33] Nguyen V H,Lamiel C,Shim J J. Hierarchical Mesoporous Graphene@Ni-Co-S Arrays on Nickel Foam for High-Performance Supercapacitors[J]. Electrochim Acta,2015,161:351-357.

    34. [34]

      [34] Mei L,Yang T,Xu C,et al. Hierarchical Mushroom-Like CoNi2S4 Arrays as a Novel Electrode Material for Supercapacitors[J]. Nano Energy,2014,3:36-45.

    35. [35]

      [35] Du W,Wang Z,Zhu Z,et al. Facile Synthesis and Superior Electrochemical Performances of CoNi2S4/Graphene Nanocomposite Suitable for Supercapacitor Electrodes[J]. J Mater Chem A,2014,2(25):9613-9619.

    36. [36]

      [36] Du W,Zhu Z,Wang Y,et al. One-Step Synthesis of CoNi2S4 Nanoparticles for Supercapacitor Electrodes[J]. RSC Adv,2014,4(14):6998-7002.

    37. [37]

      [37] Liu B,Liu B,Wang Q,et al. New Energy Storage Option:Toward ZnCo2O4 Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors[J]. ACS Appl Mater Interfaces,2013,5(20):10011-10017.

    38. [38]

      [38] Davis M,Gumeci C,Black B,et al. Tailoring Cobalt Doped Zinc Oxide Nanocrystals with High Capacitance Activity:Factors Affecting Structure and Surface Morphology[J]. RSC Adv,2012,2(5):2061-2066.

    39. [39]

      [39] Yu Z Y,Chen L F,Yu S H. Growth of NiFe2O4 Nanoparticles on Carbon Cloth for High Performance Flexible Supercapacitors[J]. J Mater Chem A,2014,2(28):10889-10894.

    40. [40]

      [40] Liu Y,Zhao Y,Yu Y,et al. Facile Synthesis of Single-Crystal Mesoporous CoNiO2 Nanosheets Assembled Flowers as Anode Materials for Lithium-Ion Batteries[J]. Electrochim Acta,2014,132:404-409.

    41. [41]

      [41] Liu Y,Zhao Y,Yu Y,et al. Hierarchical CoNiO2 Structures Assembled From Mesoporous Nanosheets with Tunable Porosity and Their Application as Iithium-Ion Battery Electrodes[J]. New J Chem,2014,38(7):3084-3091.

    42. [42]

      [42] Peng Z,Jia D,Tang J,et al. CoNiO2/TiN-TiOxN<em>y Composites for Ultrahigh Electrochemical Energy Storage and Simultaneous Glucose Sensing[J]. J Mater Chem A,2014,2(28):10904-10909.

    43. [43]

      [43] Zhang Y,Luo L,Zhang Z,et al. Synthesis of MnCo2O4 Nanofibers by Electrospinning and Calcination:Application for a Highly Sensitive Non-Enzymatic Glucose Sensor[J]. J Mater Chem B,2014,2(5):529-535.

    44. [44]

      [44] Guo D,Luo Y,Yu X,et al. High Performance NiMoO4 Nanowires Supported on Carbon Cloth as Advanced Electrodes for Symmetric Supercapacitors[J]. Nano Energy,2014,8:174-182.

    45. [45]

      [45] Cai D,Liu B,Wang D,et al. Enhanced Performance of Supercapacitors with Ultrathin Mesoporous NiMoO4 Nanosheets[J]. Electrochim Acta,2014,125:294-301.

    46. [46]

      [46] Moosavifard S E,Shamsi J,Ayazpour M. 2D High-Ordered Nanoporous NiMoO4 for High-Performance Supercapacitors[J]. Ceram Int,2015,41(1,Part B):1831-1837.

    47. [47]

      [47] Deng D H,Pang H,Du J M,et al. Fabrication of Cobalt Ferrite Nanostructures and Comparison of Their Electrochemical Properties[J]. Cryst Res Technol,2012,47(10):1032-1038.

    48. [48]

      [48] Kumbhar V S,Jagadale A D,Shinde N M,et al. Chemical Synthesis of Spinel Cobalt Ferrite(CoFe2O4) Nano-Flakes for Supercapacitor Application[J]. Appl Surf Sci,2012,259:39-43.

    49. [49]

      [49] Purushothaman K K,Cuba M,Muralidharan G. Supercapacitor Behavior of α-MnMoO4 Nanorods on Different Electrolytes[J]. Mater Res Bull,2012,47(11):3348-3351.

    50. [50]

      [50] Veerasubramani G K,Krishnamoorthy K,Sivaprakasam R,et al. Sonochemical Synthesis, Characterization, and Electrochemical Properties of MnMoO4 Nanorods for Supercapacitor Applications[J]. Mater Chem Phys,2014,147(3):836-842.

    51. [51]

      [51] Zheng Q,Zhang X,Shen Y. Fabrication of Free-Standing NiCo2O4 Nanoarrays via a Facile Modified Hydrothermal Synthesis Method and Their Applications for Lithium Ion Batteries and High-Rate Alkaline Batteries[J]. Mater Res Bull,2015,63:211-215.

    52. [52]

      [52] Liu Z Q,Xu Q Z,Wang J Y,et al. Facile Hydrothermal Synthesis of Urchin-Like NiCo2O4 Spheres as Efficient Electrocatalysts for Oxygen Reduction Reaction[J]. Int J Hydrogen Energy,2013,38(16):6657-6662.

    53. [53]

      [53] Zhu Y,Wu Z,Jing M,et al. 3D Network-Like Mesoporous NiCo2O4 Nanostructures as Advanced Electrode Material for Supercapacitors[J]. Electrochim Acta,2014,149:144-151.

    54. [54]

      [54] Deng F,Yu L,Cheng G,et al. Synthesis of Ultrathin Mesoporous NiCo2O4 Nanosheets on Carbon Fiber Paper as Integrated High-Performance Electrodes for Supercapacitors[J]. J Power Sources,2014,251:202-207.

    55. [55]

      [55] Liang J,Fan Z,Chen S,et al. Hierarchical NiCo2O4 Nanosheets@Halloysite Nanotubes with Ultrahigh Capacitance and Long Cycle Stability as Electrochemical Pseudocapacitor Materials[J]. Chem Mater,2014,26(15):4354-4360.

    56. [56]

      [56] Kong L B,Deng L,Lang J W,et al. Enhanced Electrochemical Capacitive Properties of Nickel-Cobalt Oxide Nano-flakes Materials[J]. Chinese J Chem,2012,30(3):570-576.

    57. [57]

      [57] Wu Y Q,Chen X Y,Ji P T,et al. Sol-Gel Approach for Controllable Synthesis and Electrochemical Properties of NiCo2O4 Crystals as Electrode Materials for Application in Supercapacitors[J]. Electrochim Acta,2011,56(22):7517-7522.

    58. [58]

      [58] Liu M C,Kong L B,Lu C,et al. A Sol-Gel Process for Fabrication of NiO/NiCo2O4/Co3O4 Composite with Improved Electrochemical Behavior for Electrochemical Capacitors[J]. ACS Appl Mater Interfaces,2012,4(9):4631-4636.

    59. [59]

      [59] Zhu F L,Zhao J X,Cheng Y L,et al. Magnetic and Electrochemical Properties of NiCo2O4 Microbelts Fabricated by Electrospinning[J]. Acta Phys-Chim Sin,2012,28(12):2874-2878.

    60. [60]

      [60] Carriazo D,Patino J,Gutierrez M C,et al. Microwave-Assisted Synthesis of NiCo2O4 Graphene Oxide Nanocomposites Suitable as Electrodes for Supercapacitors[J]. RSC Adv,2013,3:13690 13695.

    61. [61]

      [61] Mai L Q,Yang F,Zhao Y L,et al. Hierarchical MnMoO4/CoMoO4 Heterostructured Nanowires with Enhanced Supercapacitor Performance[J]. Nat Commun,2011,2:381.

    62. [62]

      [62] Vasanthi R,Kalpana D,Renganathan N G. Olivine-Type Nanoparticle for Hybrid Supercapacitors[J]. J Solid State Electrochem,2008,12(7/8):961-969.

    63. [63]

      [63] Yan W,Yang Z,Bian W,et al. FeCo2O4/Hollow Graphene Spheres Hybrid with Enhanced Electrocatalytic Activities for Oxygen Reduction and Oxygen Evolution Reaction[J]. Carbon,2015,92:74-83.

    64. [64]

      [64] Tang C,Tang Z,Gong H. Hierarchically Porous Ni-Co Oxide for High Reversibility Asymmetric Full-Cell Supercapacitors[J]. J Electrochem Soc,2012,159(5):A651-A656.

    65. [65]

      [65] Zhang G Q,Wu H B,Hoster H E,et al. Single-Crystalline NiCo2O4 Nanoneedle Arrays Grown on Conductive Substrates as Binder-Free Electrodes for High-Performance Supercapacitors[J]. Energy Environ Sci,2012,5(11):9453-9456.

    66. [66]

      [66] Fang D L,Wu B C,Yan Y,et al. Synthesis and Characterization of Mesoporous Mn-Ni Oxides for Supercapacitors[J]. J Solid State Electrochem,2012,16(1):135-142.

    67. [67]

      [67] Yan J,Fan Z,Sun W,et al. Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density[J]. Adv Funct Mater,2012,22:2632 2641.

    68. [68]

      [68] Hsu C T,Hu C C. Synthesis and Characterization of Mesoporous Spinel NiCo2O4 Using Surfactant-Assembled Dispersion for Asymmetric Supercapacitors[J]. J Power Sources,2013,242(0):662-671.

    69. [69]

      [69] Chen H,Jiang J,Zhang L,et al. In Situ Growth of NiCo2S4 Nanotube Arrays on Ni Foam for Supercapacitors:Maximizing Utilization Efficiency at High Mass Loading to Achieve Ultrahigh Areal Pseudocapacitance[J]. J Power Sources,2014,254:249-257.

    70. [70]

      [70] Du W,Zhu Z,Xu Y,et al. High-Performance Asymmetric Full-Cell Supercapacitors Based on CoNi2S4 Nanoparticles and Activated Carbon[J]. J Solid State Electron,2015,19(7):1-12.

    71. [71]

      [71] Gao Z,Yang W,Wang J,et al. Flexible All-Solid-State Hierarchical NiCo2O4/Porous Graphene Paper Asymmetric Supercapacitors with an Exceptional Combination of Electrochemical Properties[J]. Nano Energy,2015,13:306-317.

    72. [72]

      [72] Wang X,Han X D,Lim M,et al. Nickel Cobalt Oxide-Single Wall Carbon Nanotube Composite Material for Superior Cycling Stability and High-Performance Supercapacitor Application[J]. J Phys Chem C,2012,116(23):12448-12454.

    73. [73]

      [73] Bao F,Zhang Z,Guo W,et al. Facile Synthesis of Three Dimensional NiCo2O4@MnO2 Core Shell Nanosheet Arrays and Its Supercapacitive Performance[J]. Electrochim Acta,2015,157:31-40.

    74. [74]

      [74] Hu J,Li M,Lyu F,et al. Heterogeneous NiCo2O4@Polypyrrole Core/Sheath Nanowire Arrays on Ni Foam for High Performance Supercapacitors[J]. J Power Sources,2015,294:120-127.

    75. [75]

      [75] Li G,Xu C. Hydrothermal Synthesis of 3D NixCo1-xS2 Particles/Graphene Composite Hydrogels for High Performance Supercapacitors[J]. Carbon,2015,90:44-52.

    76. [76]

      [76] Xu K,Ren Q,Liu Q,et al. Design and Synthesis of 3D Hierarchical NiCo2S4@MnO2 Core-Shell Nanosheet Arrays for High-Performance Pseudocapacitors[J]. RSC Adv,2015,5(55):44642-44647.

    77. [77]

      [77] Wang H L,Holt C M B,Li Z,et al. Graphene-Nickel Cobaltite Nanocomposite Asymmetrical Supercapacitor with Commercial Level Mass Loading[J]. Nano Res,2012,5(9):605-617.

    78. [78]

      [78] Wang X,Liu W S,Lu X H,et al. Dodecyl Sulfate-Induced Fast Faradic Process in Nickel Cobalt Oxide-Reduced Graphite Oxide Composite Material and Its Application for Asymmetric Supercapacitor Device[J]. J Mater Chem,2012,22(43):23114-23119.

    79. [79]

      [79] Cheng D,Yang Y,Xie J,et al. Hierarchical NiCo2O4@NiMoO4 Core-Shell Hybrid Nanowire/Nanosheet Arrays for High-Performance Pseudocapacitors[J]. J Mater Chem A,2015,3(27):14348-14357.

    80. [80]

      [80] Kong W,Lu C,Zhang W,et al. Homogeneous Core-Shell NiCo2S4 Nanostructures Supported on Nickel Foam for Supercapacitors[J]. J Mater Chem A,2015,3(23):12452-12460.

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    11. [11]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

Metrics
  • PDF Downloads(0)
  • Abstract views(325)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return