Citation: JIANG Wen, ZHOU Zhen, SHI Yexin, TAO Renyou, ZHANG Guiluo, ZHOU Xiaohua, WANG Dan. Preparation and Characterization of Chitosan Oligo-Saccharide-Hydrolyzed Gliadin Copolymer[J]. Chinese Journal of Applied Chemistry, ;2016, 33(3): 284-292. doi: 10.11944/j.issn.1000-0518.2016.03.150226 shu

Preparation and Characterization of Chitosan Oligo-Saccharide-Hydrolyzed Gliadin Copolymer

  • Corresponding author: ZHOU Zhen,  ZHOU Xiaohua, 
  • Received Date: 3 July 2015
    Available Online: 12 November 2015

    Fund Project:

  • The optimal conditions for the synthesis of chitosan oligosaccharide-hydrolyzed gliadin copolymer by roughly-purified microbial transglutaminase(MTGase) catalysis were investigated, and the structures of obtained copolymer were characterized. These optimal conditions are estimated as the substrates mass ratio of chitosan chitosan oligosaccharide and hydrolyzed gliadin is 1:40 under pH 6.00~6.50, and 50 min stirring at 50℃. The grafting rate at these conditions can reach up to 60%~70%. Infrared spectrum analysis of the copolymer shows that, compared with chitosan oligosaccharide, the introduction of electron withdrawing group to chitosan oligosaccharide-hydrolyzed gliadin copolymer has inductive effects on the amide C=O, and causes the vibration peak shift to higher wave number with enhanced absorption intensity. DTA curve indicates that the chitosan oligosaccharide-hydrolyzed gliadin copolymer begins to lose the associated water at 60.91℃, melt at 387.55℃, and completely degrade at 665.25℃. This is significantly different to that of chitosan oligosaccharide and gliadin. XRD analysis shows that the crystallinity of grafted copolymers is greatly reduced, the cell data is different from those of chitosan oligosaccharide. HPLC analysis shows that the copolymer has two main components, accounting together for 80.6% of the total mass. The relative molecular masses of the two main components are 66069 and 27285, respectively. The copolymer does not dissolve in water and many organic solvents, but is slightly soluble in 1% NaOH, with a solubility at 0.184 mg/100 g. The melting range of the copolymer is 162~163℃.
  • 加载中
    1. [1]

      [1] WANG Yupeng,WANG Chunhua,QU Rongjun,et al. Progress in the Study of Antibacterial Fiber[J]. Ludong Univ J(Nat Sci Edn),2009,25(3):256-262(in Chinese).王玉鹏,王春华,曲荣君,等. 抗菌纤维的研究进展[J]. 鲁东大学学报(自然科学版),2009,25(3):256-262.

    2. [2]

      [2] Yeo S Y,Lee H J,Jeong S H. Preparation of Nanocomposite Fibers for Permanent Antibacterial Effect[J]. J Mater Sci,2003,38(10):2143-2147.

    3. [3]

      [3] Ye W J,Man F L,John X,et al. Novel Core-Shell Particles with Poly(n-butyl acrylate) Cores and Chitosan Shells as an Antibacterial Coating for Textiles[J]. Polymer,2005,46(23):10538-10543.

    4. [4]

      [4] FENG Decai,LIU Xiaolin,YANG Qi,et al. Progress in Antibacterial Agents and Antibacterial Fibers[J]. China Synth Fiber Ind,2005,28(4):40-42(in Chinese).冯德才,刘小林,杨其,等. 抗菌剂与抗菌纤维的研究进展[J]. 合成纤维工业,2005,28(4):40-42.

    5. [5]

      [5] Yao F,Fu G D,Zhao J P,et al. Antibacterial Effect of Surface-functionalized Polypropylene Hollow Ber Membrane from Surface-initiated Atom Transfer Radical Polymerization[J]. J Membr Sci,2008,319(2):149-157.

    6. [6]

      [6] Fillat A,Gallardo O,Vidal T,et al. Enzymatic Grafting of Natural Phenols to Fax Fbres:Development of Antimicrobial Properties[J]. Carbohydr Polym,2012,87(1):146-152.

    7. [7]

      [7] ZHOU Xiaohua,LUO Hui,ZHOU Zhen. Synthesis of Chitosan-Gelatin Copolymer by MTGase and Main Properities[J]. Chinese J Appl Chem,2008,25(3):334-339 (in Chinese).周小华,骆辉,周桢. 壳聚糖-明胶共聚物的酶促合成及主要性质[J]. 应用化学,2008,25(3):334-339.

    8. [8]

      [8] Hirano S H,Noishiki Y H,Kinugawa J K. Chitin and Chitosan for Use as a Novel Biomedical Material[J]. Polym Mater Sci Eng,1985,53(2):649-653.

    9. [9]

      [9] Jun H O,Baowu W,Perris D. Field,et al. Characteristics of Edible Films Made from Dairy Proteins and Zein Hydrolysate Cross-linked with Transglutaminase[J]. Int J Food Sci Technol,2004,39(3):287-294.

    10. [10]

      [10] RAN Lan,ZHANG Rong,WEN Xia,et al. Study On Determination of Glucosamine Hydrochloride Tablets by Colorimetry[J]. West China J Pharm Sci,200l,16(3):217-218(in Chinese).冉兰,张榕,文霞,等. 比色法测定盐酸氨基葡萄糖片的含量[J]. 华西药学杂志,2001,16(3):217-218.

    11. [11]

      [11] LU Jian. Protein Purification Technology and Its Application[M]. Beijing:Chemical Industry Press,2005:29-52(in Chinese).陆健. 蛋白质纯化技术及应用[M]. 北京:化学工业出版社,2005:29-52.

    12. [12]

      [12] ZHOU Feng. Molecular Dynamics Simulation of Polymer Melts Flow in Nanochannel[D] Dalian:Dalian University of Technology,2014( in Chinese).周峰. 纳米通道中高聚物熔体流动分子动力学模拟[D]. 大连:大连理工大学,2014.

    13. [13]

      [13] Ana L C G,Silvana P D G F. Action of Microbial Transglutaminase(MTGase) in the Modification of Food Proteins:A Review[J]. Food Chem,2015,171(2):315-322.

    14. [14]

      [14] FANG Yun,XIA Yongmei.Aliphatic Amino Acid Surfactants[J]. Daily Chem Ind,1988,(6):16-22(in Chinese).方云,夏永梅. 脂肪族氨基酸型表面活性剂[J]. 日用化学工业,1988,(6):16-22.

    15. [15]

      [15] MA Yongqiang,YUE Wenjing,ZHANG Na,et al. Determination of Transglutaminase Activity Group[J]. Food Mach,2011,27(4):7-9(in Chinese).马永强,岳文静,张娜,等. 转谷氨酰胺酶活性基团研究[J]. 食品与机械,2011,27(4):7-9.

    16. [16]

      [16] LI Yuhong. Determination of Formula Weight and Molecular Weight Distribution of High Polymer PVA by GFC[J]. Nat Gas Chem Ind,2003,28:57-59(in Chinese).李宇虹. 凝胶过滤色谱测定高分子量聚乙烯醇分子量和分子量分布[J]. 天然气化工,2003,28:57-59.

  • 加载中
    1. [1]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    6. [6]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    14. [14]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    15. [15]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    16. [16]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    17. [17]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    18. [18]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(0)
  • Abstract views(447)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return