Citation: ZHANG Jin, ZHOU Shidong, LU Guowei, YAN Hongyu, ZHAO Yongli. Research Development of Activity Coefficient Models in Hydrate Reaction Media[J]. Chinese Journal of Applied Chemistry, ;2016, 33(3): 277-283. doi: 10.11944/j.issn.1000-0518.2016.03.150213 shu

Research Development of Activity Coefficient Models in Hydrate Reaction Media

  • Corresponding author: ZHOU Shidong, 
  • Received Date: 24 June 2015
    Available Online: 13 August 2015

    Fund Project:

  • Activity coefficient calculation is of great significance to the phase equilibrium of hydrate and the development of hydrate technology. Margules, Wilson, NRTL, UNIQUAC and UNIFAC models were studied by large amounts of survey with detailed analysis. The results show that Margules activity coefficient model is widely used in binary systems. Wilson activity coefficient model is not suitable for the system that solute and ion can not mix completely. The error of UNIQUAC in the calculation of aqueous or imidazole ion is bigger. We often choose NRTL for multiple ion systems. UNIFAC is widely used and can achieve precise calculation in high concentration solutions. Activity correlation equation parameters can be fit very well with high accuracy, but it is still difficult for systems of high temperature and pressure and needs to be developed in the future.
  • 加载中
    1. [1]

      [1] Eslamimanesh A,Mohammadi A H,Richon D,et al. Application of Gas Hydrate Formation in Separation Processes:A Review of Experimental Studies[J]. J Chem Thermodyn,2012,46(3):62-71.

    2. [2]

      [2] Artem A S,Andrey Y M,Tatyana V R. Methane Capacity of Double Tetrabutylammonium Bromide+Methane Ionic Clathrate Hydrates[J]. Energy Fuels,2012,26(6):3711-3716.

    3. [3]

      [3] Karimi R,Varaminian F,Izadpanah A A,et al. Effects of Different Surfactants on Ethane Hydrate Formation Kinetics:Experimental and Modeling Studies[J]. Energy Technol,2013,1(9):530-536.

    4. [4]

      [4] Zhou S D,Yu Y S,Zhao M M,et al. Effect of Graphite Nanoparticles on Promoting CO2 Hydrate Formation[J]. Energy Fuels,2014,28(7):4694-4698.

    5. [5]

      [5] WU Qiang,ZHAO Meirong,GAO Xia. Effect of Propane on Phase Equilibrium of Gas Hydrate[J]. J Heilongjiang Univ Sci Technol,2014,24(1):38-42(in Chinese).吴强,赵美蓉,高霞. 丙烷对瓦斯水合物相平衡条件的影响[J]. 黑龙江科技大学学报,2014,24(1):38-42.

    6. [6]

      [6] LIU Changling,YE Yuguang,SUN Shicai,et al. The P-T Gas Hydrate Stability under Different Systemconditions and Influencin Factors of Experimental Research[J]. China Sci:Earth Sci,2013,43(3):406-413(in Chinese).刘昌岭,业渝光,孙始财,等. 不同体系下天然气水合物P-T稳定条件及其影响因素的实验研究[J]. 中国科学:地球科学,2013,43(3):406-413.

    7. [7]

      [7] XU Xianzhen. Electrolyte Solution Activity Coefficient Model[D]. Ocean University China,2013(in Chinese).徐显朕. 电解质溶液活度系数模型的研究[D]. 中国海洋大学,2013.

    8. [8]

      [8] WANG Yichen. A Problem in the Applications of Margules Equation[J]. J Yantai Teachers Univ(Nat Sci Edit),1992,8(1/2):112-114(in Chinese).王宜辰. Margules方程应用中的一个问题[J]. 烟台师范学院学报(自然科学版),1992,8(1/2):112-114.

    9. [9]

      [9] WU Dake,CHEN Shulin. Carbon Dioxide/n-Butane, CO2/isobutane Binary System Activity Coefficient Is Calculated[J]. J Guizhou Inst Technol,1996,25(2):30-33(in Chinese).吴大可,陈树琳. 二氧化碳/正丁烷、二氧化碳/异丁烷二元系活度系数计算[J]. 贵州工学院学报,1996,25(2):30-33.

    10. [10]

      [10] Torres J C,Jose C G. Prediction of Ion-interaction Parameters of Binary 2∶1 and 2∶2 Ion-exchange Systems by the Coupling of the Margules Model with a Linear Free Energy Correlation Approach[J]. Micropor Mesopor Mater,2009,126(1/2):182-191.

    11. [11]

      [11] JIN Zhangli,QIU Daofa. Vapor Vhase Component Activity Coefficient was Calculated by the Wilson Equation[J]. Chem Eng,1988,1(1):27-32(in Chinese).金彰礼,邱道发. 用Wilson方程计算汽相组分活度系数[J]. 化学工程,1988,1(1):27-32.

    12. [12]

      [12] WANG Hao,LU Kang,PENG Xuan. Based on Wilson, UNIQUAC and NRTL Activity Coefficient Model System of Ionic Liquid Phase Equilibrium[J]. J Beijing Univ Chem Ind(Nat Sci Edn),2013,40(1):10-15(in Chinese).王皓,陆康,彭璇. 基于Wilson、UNIQUAC和NRTL活度系数模型的离子液体体系的相平衡比较[J]. 北京化工大学学报(自然科学版),2013,40(1):10-15.

    13. [13]

      [13] Sivamohan N R,Giridhar M. An Association and Wilson Activity Coefficient Model for Solubilities of Aromatic Solid Pollutants in Supercritical Carbon Dioxide[J]. Therm Acta,2012,541(10):49-56.

    14. [14]

      [14] Mostafa V,Morteza A,Gholamreza V N.Application of Genetic Algorithm to the Calculation of Parameters for NRTL and Two-Suffix Margules Models in Ternary Extraction Ionic Liquid Systems[J]. J Ind Eng Chem,2012,18(5):1715-1720.

    15. [15]

      [15] Nasrifar K,Ayatollahi S,Moshfeghian M. Generalized Saturated Liquid Density Prediction Method for Pure Compounds and Multi-component Mixtures[J]. Fluid Phase Equilib,2000,168(1):71-90.

    16. [16]

      [16] Nasrifar K,Moshfeghian M. A New Cubic Equation of State for Simple Fluids:Pure and Mixture[J]. Fluid Phase Equilib,2001,190(1/2):73-88.

    17. [17]

      [17] Nasrifar K,Moshfeghian M. Vapor Liquid Equilibria of LNG and Gas Condensate Mixtures by the Nasrifar Moshfeghian Equation of State[J]. Fluid Phase Equilib,2002,200(1):203-216.

    18. [18]

      [18] Kang J W,Vladimir D,Robert D C,et al. A New Method for Evaluation of UNIFAC Interaction Parameters[J]. Fluid Phase Equilib,2011,309(1):68-75.

    19. [19]

      [19] Hajar D,Haghtalab A. Prediction of Hydrate Formation Conditions Using GE-EOS and UNIQUAC Models for Pure and Mixed-gas Systems[J]. Fluid Phase Equilib,2014,369(15):1-12.

    20. [20]

      [20] Haghtalab A,Mohammad A A. An Excess Gibbs Energy Model to Study the Phase Behavior of Aqueous Two-phase Systems of Polyethylene Glycolqdextran[J]. Fluid Phase Equilib,2000,171(1/2):77-90.

    21. [21]

      [21] Haghtalab A,Peyman M. Vapor-liquid Equilibria of Asymmetrical Systems Using UNIFAC-NRF Group Contribution Activity Coefficient Model[J]. Fluid Phase Equilib,2010,289(1):61-71.

    22. [22]

      [22] Haghtalab A,Abolfazl S. Modeling Solubility of Acid Gases in Alkanolamines Using the Nonelectrolyte Wilson-nonrandom Factor Model[J]. Fluid Phase Equilib,2010,289(1):6-14.

    23. [23]

      [23] Garnet B E,Elsa I C,James F P,et al. Prediction of Activity Coefficients in Liquid Aerosol Particles Containing Organic Compounds,Dissolved Inorganic Salts and Water-Part 3:Organic Compounds, Water and Ionic Constituents by Consideration of Short-, mid-, and Long-range Effects Using X-UNIFAC.3[J]. Atmos Environ,2006,33(40):6437-6452.

    24. [24]

      [24] Mohammadi A H,Dominique R. Phase Equilibria of Clathrate Hydrates of Methyl Cyclopentane, Methyl Cyclohexane, Cyclopentane or Cyclohexane+carbon dioxide[J]. Chem Eng Sci,2009,24(64):5319-5322.

    25. [25]

      [25] Moradia S,Haghtalabb A,Alireza F. Prediction of Hydrate Formation Conditions in the Solutions Containing Electrolyte and Alcohol Inhibitors and Their Mixtures Using UNIQUAC-NRF models[J]. Fluid Phase Equilib,2013,15(349):61-66.

    26. [26]

      [26] Paduszynski K,Urszula D. Extension of Modified UNIFAC(Dortmund) Matrix to Piperidinium Ionic Liquids[J]. Fluid Phase Equilib,2013,353(15):115-120.

  • 加载中
    1. [1]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    2. [2]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    3. [3]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    4. [4]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    5. [5]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    6. [6]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    7. [7]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    8. [8]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    12. [12]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    15. [15]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    17. [17]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(0)
  • Abstract views(389)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return