Citation: Fengzhang TU, Zhong JIN. Honeycomb-like N, O dual-doped carbon/selenium composites: Preparation and performance in alkali metal-selenium batteries[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2371-2384. doi: 10.11862/CJIC.20250227 shu

Honeycomb-like N, O dual-doped carbon/selenium composites: Preparation and performance in alkali metal-selenium batteries

Figures(6)

  • A N, O dual-doped honeycomb-like porous carbon (DHPC) was designed and prepared as an efficient selenium host material for lithium-selenium (Li-Se) and sodium-selenium (Na-Se) batteries. The DHPC possessed a hierarchical porous structure that effectively encapsulates Se and suppresses the shuttle effect of polyselenides. Combined with theoretical calculations, it is confirmed that the N, O dual-doping enhances the chemical adsorption of polyselenides. The Se@DHPC cathode delivered a high initial charging capacity of 675 mAh·g-1 and excellent cycling stability (with a capacity decay rate of only 0.14% per cycle) in Li-Se batteries. Moreover, it exhibited a high capacity of 688 mAh·g-1 and a remarkable capacity retention rate after 300 cycles in Na-Se batteries.
  • 加载中
    1. [1]

      ZHANG F, GUO X, XIONG P, ZHANG J Q, SONG J J, YAN K, GAO X C, LIU H, WANG G X. Interface engineering of MXene composite separator for high-performance Li-Se and Na-Se batteries[J]. Adv. Energy Mater., 2020, 10(20): 202000446

    2. [2]

      QI X Q, YANG Y, JIN Q, YANG F Y, XIE Y, SANG P F, LIU K, ZHAO W B, XU X B, FU Y Z, ZHOU J, QIE L, HUANG Y H. Two-plateau Li-Se chemistry for high volumetric capacity Se cathodes[J]. Angew. Chem. -Int. Edit., 2020, 59(33): 13908-13914  doi: 10.1002/anie.202004424

    3. [3]

      LIM J B, KIM H J, NA J H, KIM J K, JEONG S Y, PARK S K. Hierarchical nitrogen-doped multichannel carbon nanofibers for efficient potassium-selenium batteries[J]. Rare Met., 2025, 44(6): 3839-3851  doi: 10.1007/s12598-024-03133-6

    4. [4]

      HUANG X L, WANG W, DENG J H, GAO W, LIU D Y, MA Q R, XU M W. A Se-hollow porous carbon composite for high-performance rechargeable K-Se batteries[J]. Inorg. Chem. Front., 2019, 6(8): 2118-2125  doi: 10.1039/C9QI00437H

    5. [5]

      ZHAO C H, LUO J S, HU Z B. Hierarchical porous N, O Co-doped carbon/Se composite derived from hydrothermal treated chitosan as Li-Se battery cathode[J]. Micro Nano Lett., 2018, 13(10): 1386-1389  doi: 10.1049/mnl.2018.5154

    6. [6]

      XIA M T, FU H W, LIN K R, RAO A M, CHA L M, LIU H, ZHOU J, WANG C X, LU B A. Hydrogen-bond regulation in organic/aqueous hybrid electrolyte for safe and high-voltage K-ion batteries[J]. Energ. Environ. Sci., 2024, 17(3): 1255-1265  doi: 10.1039/D3EE03729K

    7. [7]

      YE W K, LI W Y, WANG K, YIN W H, CHAI W W, QU Y, RUI Y C, TANG B H J. ZIF-67@Se@MnO2: A novel Co-MOF-based composite cathode for lithium selenium batteries[J]. J. Phys. Chem. C, 2019, 123(4): 2048-2055  doi: 10.1021/acs.jpcc.8b10598

    8. [8]

      SONG J P, WU L, DONG W D, LI C F, CHEN L H, DAI X, LI C, CHEN H, ZOU W, YU W B, HU Z Y, LIU J, WANG H E, LI Y, SU B L. MOF-derived nitrogen-doped core-shell hierarchical porous carbon confining selenium for advanced lithium-selenium batteries[J]. Nanoscale, 2019, 11(14): 6970-698  doi: 10.1039/C9NR00924H

    9. [9]

      JO D, LIM J B, KIM J K, KANG Y C, PARK S K. Three-dimensional carbon microclusters organized by hollow carbon nanospheres for stable Li metal anodes: Enabling high packing density and low tortuosity via self-assembly[J]. Rare Met., 2025, 44(1): 95-109  doi: 10.1007/s12598-024-02931-2

    10. [10]

      ZHOU L, CUI Y P, KONG D Q, FENG W T, GAO X L, YAN Y G, REN H, HU H, XUE Q Z, YAN Z F, XING W. Amorphous Se species anchored into enclosed carbon skeleton bridged by chemical bonding toward advanced K-Se batteries[J]. J. Energy Chem., 2021, 61: 319-326  doi: 10.1016/j.jechem.2021.03.027

    11. [11]

      CHENG L, MA C H, LU W Q, WANG X, YUE H J, ZHANG D, XING Z Y. A graphitized hierarchical porous carbon as an advanced cathode host for alkali metal-selenium batteries[J]. Chem. Eng. J., 2022, 433: 133527  doi: 10.1016/j.cej.2021.133527

    12. [12]

      GUO B R, MI H W, ZHANG P X, REN X Z, LI Y L. Free-standing selenium impregnated carbonized leaf cathodes for high-performance sodium-selenium batteries[J]. Nanoscale Res. Lett., 2019, 14: 2861

    13. [13]

      DING J N, WANG Y D, HUANG Z C, SONG W Q, ZHONG C, DING J, HU W B. Toward theoretical capacity and superhigh power density for potassium-selenium batteries via facilitating reversible potassiation kinetics[J]. ACS Appl. Mater. Interfaces, 2022, 14(5): 6828-6840  doi: 10.1021/acsami.1c22623

    14. [14]

      DENG W N, LI Y H, XU D F, ZHOU W, XIANG K X, CHEN H. Three-dimensional hierarchically porous nitrogen-doped carbon from water hyacinth as selenium host for high-performance lithium-selenium batteries[J]. Rare Met., 2022, 41(10): 3432-3445  doi: 10.1007/s12598-022-02022-0

    15. [15]

      WANG H A, WANG P T, CAO J P, LIANG C, YU K F. N/S co-doped biomass-based porous carbon surface-embedded small- molecule selenium as cathode circumflex accent a for high- performance K-Se batteries[J]. Electrochim. Acta, 2022, 432(10): 141158

    16. [16]

      WU X Y, CHEN X, WU H Y, XIE B, WANG D G, WANG R, ZHANG X Y, PIAO Y Z, DIAO G W, CHEN M. Encapsulation of Se in dual-wall hollow carbon spheres: Physical confinement and chemisorption for superior Na-Se and K-Se batteries[J]. Carbon, 2022, 187: 354-364  doi: 10.1016/j.carbon.2021.11.013

    17. [17]

      LYU W, YU X Z, LV Y W, RAO A M, ZHOU J, LU B G. Building stable solid-state potassium metal batteries[J]. Adv. Mater., 2024, 36(24): 2305795  doi: 10.1002/adma.202305795

    18. [18]

      DONG W D, YU W B, XIA F J, CHEN L D, ZHANG Y J, TAN H G, WU L, HU Z Y, MOHAMED H S H, LIU J, DENG Z, LI Y, CHEN L H, SU B L. Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries[J]. J. Colloid Interface Sci., 2021, 582: 60-69  doi: 10.1016/j.jcis.2020.06.071

    19. [19]

      XIA Q, HU J L, CHEN Q Q, ZHANG L Z. Highly N-doped and flexible carbon nanofiber membrane as cathode host for Li-Se batteries[J]. J. Alloy. Compd., 2022, 927: 167014  doi: 10.1016/j.jallcom.2022.167014

    20. [20]

      GAO F, YUE X A, XU X Y, XU P, ZHANG F, FAN H S, WANG Z L, WU Y T, LIU X, ZHANG Y. A N/Co co-doped three-dimensional porous carbon as cathode host for advanced lithium-selenium batteries[J]. Rare Met., 2023, 42(8): 2670-2678  doi: 10.1007/s12598-023-02273-5

    21. [21]

      LIM J B, PARK S K. Novel N-doped multichannel carbon nanofiber architecture with porous CoS nanoprisms for high-performance potassium-ion batteries[J]. Rare Met., 2024, 43(3): 971-983  doi: 10.1007/s12598-023-02530-7

    22. [22]

      LIM J B, NA J H, KIM H J, KIM J K, YOO Y, PARK S K. Electrospun MOF-derived N-doped mesoporous carbon fibers embedded with ultrafine vanadium oxide as an ultralong cycling stability for potassium ion storage[J]. J. Alloy. Compd., 2024, 1002: 175507  doi: 10.1016/j.jallcom.2024.175507

    23. [23]

      KANG J Z, YU H, JING H B, HUANG L S, WANG J J, WANG X M, ZHAO X Y, QI W H, DU C F. Screening and activating small-molecule Se in microporous S-decorated/N-doped carbon spheres for an enhanced rate performance[J]. Appl. Surf. Sci., 2023, 619: 156724  doi: 10.1016/j.apsusc.2023.156724

    24. [24]

      KIM J K, KANG Y C. Encapsulation of Se into hierarchically porous carbon microspheres with optimized pore structure for advanced Na-Se and K-Se batteries[J]. ACS Nano, 2020, 14(10): 13203-13216  doi: 10.1021/acsnano.0c04870

    25. [25]

      CHEN X, XU L H, ZENG L X, WANG Y Y, ZENG S H, LI H Z, LI X Y, QIAN Q R, WEI M D, CHEN Q H. Synthesis of the Se-HPCF composite via a liquid-solution route and its stable cycling performance in Li-Se batteries[J]. Dalton Trans., 2020, 49(41): 14536-14542  doi: 10.1039/D0DT03035J

    26. [26]

      ZHOU J, CHEN M X, WANG T, LI S Y, ZHANG Q S, ZHANG M, XU H J, LIU J L, LIANG J F, ZHU J, DUAN X F. Covalent selenium embedded in hierarchical carbon nanofibers for ultra-high areal capacity Li-Se batteries[J]. iScience, 2020, 23(3): 100919  doi: 10.1016/j.isci.2020.100919

    27. [27]

      KALIMUTHU B, NALLATHAMBY K. Designed formulation of Se-impregnated N-containing hollow core mesoporous shell carbon spheres: Multifunctional potential cathode for Li-Se and Na-Se batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(32): 26756-26770  doi: 10.1021/acsami.7b05103

    28. [28]

      ZHAO X S, YIN L C, ZHANG T, ZHANG M, FANG Z B, WANG C Z, WEI Y J, CHEN G, ZHANG D, SUN Z H, LI F. Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries[J]. Nano Energy, 2018, 49: 137-146  doi: 10.1016/j.nanoen.2018.04.045

    29. [29]

      LU S J, LIN J Y, WANG C H, ZHANG Y F, ZHANG Y, FAN H S. Heterogeneous engineering of MnSe@NC@ReS2 core-shell nanowires for advanced sodium-/potassium-ion batteries[J]. Rare Met., 2024, 43(8): 3713-3723  doi: 10.1007/s12598-024-02650-8

    30. [30]

      GAO X J, YANG X F, WANG S Z, SUN Q, ZHAO C T, LI X N, LIANG J W, ZHENG M, ZHAO Y, WANG J W, LI M S, LI R, SHAM T K, SUN X L. A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state Li-Se batteries[J]. J. Mater. Chem. A, 2020, 8(1): 278-286  doi: 10.1039/C9TA10623E

    31. [31]

      DING J, ZHOU H, ZHANG H, STEPHENSON T, LI Z, KARPUZOV D, MITLIN D. Exceptional energy and new insight with a sodium- selenium battery based on a carbon nanosheet cathode and a pseudographite anode[J]. Energ. Environ. Sci., 2017, 10(1): 153-165  doi: 10.1039/C6EE02274J

    32. [32]

      ZHANG H, JIA D D, YANG Z W, YU F Q, SU Y L, WANG D J, SHEN Q. Alkaline lignin-derived porous carbon as an efficient scaffold for lithium-selenium battery cathode[J]. Carbon, 2017, 122: 547-555  doi: 10.1016/j.carbon.2017.07.004

    33. [33]

      YUAN B B, SUN X Z, ZENG L C, YU Y, WANG Q S. A freestanding and long-life sodium-selenium cathode by encapsulation of selenium into microporous multichannel carbon nanofibers[J]. Small, 2018, 14(9): 1703252  doi: 10.1002/smll.201703252

    34. [34]

      MUKKABLA R, DESHAGANI S, MEDURI P, DEEPA M, GHOSAL P. Selenium/graphite platelet nanofiber composite for durable Li-Se batteries[J]. ACS Energy Lett., 2017, 2(6): 1288-1295  doi: 10.1021/acsenergylett.7b00251

    35. [35]

      YI Z Q, YUAN L X, SUN D, LI Z, WU C, YANG W J, WEN Y W, SHAN B, HUANG Y H. High-performance lithium-selenium batteries promoted by heteroatom-doped microporous carbon[J]. J. Mater. Chem. A, 2015, 3(6): 3059-3065  doi: 10.1039/C4TA06141A

    36. [36]

      CAI Q F, LI Y Y, WANG L, LI Q W, XU J, GAO B, ZHANG X M, HUO K F, CHU P K. Freestanding hollow double-shell Se@CNx nanobelts as large-capacity and high-rate cathodes for Li-Se batteries[J]. Nano Energy, 2017, 32: 1-9  doi: 10.1016/j.nanoen.2016.12.010

    37. [37]

      LI H X, LANG J W, LEI S L, CHEN J T, WANG K J, LIU L Y, ZHANG T Y, LIU W S, YAN X B. A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials[J]. Adv. Funct. Mater., 2018, 28(30): 1800757  doi: 10.1002/adfm.201800757

  • 加载中
    1. [1]

      Qi XiaKe YanKe JinYang WuYanan FuDing ChenHuixin ChenHongjun Yue . Interface design of tea stem-derived micropore carbon enables high-performance Na-Se batteries. Chinese Chemical Letters, 2025, 36(10): 110406-. doi: 10.1016/j.cclet.2024.110406

    2. [2]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    3. [3]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    4. [4]

      Yuwan LuXiaodan ZhangYuming Huang . Dual-site Se/NC specific peroxidase-like nanozyme for highly sensitive methimazole detection. Chinese Chemical Letters, 2025, 36(4): 110129-. doi: 10.1016/j.cclet.2024.110129

    5. [5]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    6. [6]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    7. [7]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    8. [8]

      Jing LiuFei WangHuijie WeiYong LiuXiaoliang ZhaiSifan WenQiaobao Zhang . Fabrication and application of binder-free cathodes in high-performance lithium-chalcogen (S, Se, Te) batteries: A review. Chinese Chemical Letters, 2025, 36(11): 110475-. doi: 10.1016/j.cclet.2024.110475

    9. [9]

      Aonan WangJingwen DaiYiming GuoFanghua NingXiaoyu LiuSidra SubhanJiaqian QinShigang LuJin Yi . Imidazolium bromide based dual-functional redox mediator for the construction of dendrite-free Li-CO2 batteries. Chinese Chemical Letters, 2025, 36(7): 110186-. doi: 10.1016/j.cclet.2024.110186

    10. [10]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    11. [11]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    12. [12]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    13. [13]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    14. [14]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    15. [15]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    16. [16]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    17. [17]

      Bao LiPengyao YanMengmin JiaLiang WangYaru QiaoHaowen LiCanhui WuZhuangzhuang ZhangDongmei DaiDai-Huo Liu . Engineering lithiophilic LiCx layer to robust interfacial chemistry between LAGP and Li anode for Li-metal batteries. Chinese Chemical Letters, 2025, 36(7): 110145-. doi: 10.1016/j.cclet.2024.110145

    18. [18]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    19. [19]

      Zheng LiFangkun LiXijun XuJun ZengHangyu ZhangLei XiYiwen WuLinwei ZhaoJiahe ChenJun LiuYanping HuoShaomin Ji . A scalable approach to Na4Fe3(PO4)2P2O7@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110390-. doi: 10.1016/j.cclet.2024.110390

    20. [20]

      Yue WangWenli HuBinchao ShiHe JiaShilin MeiChang-Jiang Yao . Design of carbon@WS2 host with graham condenser-like structure for tunable sulfur loading of lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(6): 110065-. doi: 10.1016/j.cclet.2024.110065

Metrics
  • PDF Downloads(0)
  • Abstract views(329)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return