Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation
- Corresponding author: Xiaoming GUO, guoxiaoming@sit.edu.cn Liang LI, lilianglcx@sit.edu.cn
Citation:
Yanzhe WANG, Xiaoming GUO, Qiangsheng GUO, Liang LI, Bin LU, Peihang YE. Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(11): 2218-2228.
doi:
10.11862/CJIC.20250202
KIM C, YOO C J, OH H S, MIN B K, LEE U. Review of carbon dioxide utilization technologies and their potential for industrial application[J]. J. CO2 Util., 2022,65102239. doi: 10.1016/j.jcou.2022.102239
VALLURI S, CLAREMBOUX V, KAWATRA S. Opportunities and challenges in CO2 utilization[J]. J. Environ. Sci., 2022,113:322-344. doi: 10.1016/j.jes.2021.05.043
MEBRAHTU C, KREBS F, ABATE S, PERATHONER S, CENTI G, PALKOVITS R. CO2 methanation: Principles and challenges[M]// ALBONETTI S, PERATHONER S, QUADRELLI E A. Studies in surface science and catalysis: Vol. 178. [S. l. ]: Elsevier, 2019: 85-103
ASHOK J, PATI S, HONGMANOROM P, ZHANG T X, CHEN J M, KAWI S. A review of recent catalyst advances in CO2 methanation processes[J]. Catal. Today, 2020,356:471-489. doi: 10.1016/j.cattod.2020.07.023
GHAIB K, BEN-FARES F Z. Power-to-methane: A state-of-the-art review[J]. Renew. Sust. Energ. Rev., 2018,81:433-446. doi: 10.1016/j.rser.2017.08.004
BUKHARI M H, JAVED A, KAZMI S A A, ALI M, CHAUDHARY M T. Techno-economic feasibility analysis of hydrogen production by PtG concept and feeding it into a combined cycle power plant leading to sector coupling in future[J]. Energy Conv. Manag., 2023,282116814. doi: 10.1016/j.enconman.2023.116814
YANG C Y, ZHANG T Y, CHEN Y S, WANG W J, ZHUO H Y, YANG X F, HUANG Y Q. Intrinsic mechanism for carbon dioxide methanation over Ru-based nanocatalysts[J]. ACS Catal., 2023,13(17):11556-11565. doi: 10.1021/acscatal.3c02502
NOVÁK É, FODOR K, SZAILER T, OSZKÓ A, ERDÖHELYI A. CO2 hydrogenation on Rh/TiO2 previously reduced at different temperatures[J]. Top. Catal., 2002,20:107-117. doi: 10.1023/A:1016359601399
LIU J, BING W H, XUE X G, WANG F, WANG B, HE S, ZHANG Y K, WEI M. Alkaline-assisted Ni nanocatalysts with largely enhanced low‑temperature activity toward CO2 methanation[J]. Catal. Sci. Technol., 2016,6(11):3976-3983. doi: 10.1039/C5CY02026C
BACARIZA M C, BÉRTOLO R, GRAÇA I, LOPES J M, HENRIQUES C. The effect of the compensating cation on the catalytic performances of Ni/USY zeolites towards CO2 methanation[J]. J. CO2 Util., 2017,21:280-291. doi: 10.1016/j.jcou.2017.07.020
BACARIZA M C, GRAÇA I, BEBIANO S S, LOPES J M, HENRIQUES C. Magnesium as promoter of CO2 methanation on Ni-based USY zeolites[J]. Energy Fuels, 2017,31(9):9776-9789. doi: 10.1021/acs.energyfuels.7b01553
LIANG C F, HU X, WEI T, JIA P, ZHANG Z M, DONG D H, ZHANG S, LIU Q, HU G Z. Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity[J]. Int. J. Hydrog. Energy, 2019,44(16):8197-8213. doi: 10.1016/j.ijhydene.2019.02.014
GARBARINO G, KOWALIK P, RIANI P, ANTONIAK‑JURAK K, PIETA P, LEWALSKA‑GRACZYK A, LISOWSKI W, NOWAKOWSKI R, BUSCA G, PIETA I S. Improvement of Ni/Al2O3 catalysts for low-temperature CO2 methanation by vanadium and calcium oxide addition[J]. Ind. Eng. Chem. Res., 2021,60(18):6554-6564. doi: 10.1021/acs.iecr.0c05556
ZHANG Z Q, DENG S R, FANG X Z, XU J W, XU X L, WANG X. CrOx-promoted Ru/Al2O3 for CO2 methanation: Formation of surface Cr-doped RuO2 solid solution plays key roles[J]. Fuel, 2023,339127414. doi: 10.1016/j.fuel.2023.127414
TAMIMI K, ALAVI S M, REZAEI M, AKBARI E. Preparation of the Mn-Promoted NiO-Al2O3 nanocatalysts for low temperature CO2 methanation[J]. J. Energy Inst., 2021,99:48-58. doi: 10.1016/j.joei.2021.08.008
HU X, GUO X M, MENG T, GUO Q S, CHENG J L, WANG Y Z, HUANG W Z, NG F T T. NiAlFe catalysts based on hydrotalcite-like precursors for low temperature CO2 methanation: Electronic effects among components and intrinsic activity of Ni site[J]. Appl. Surf. Sci., 2024,670160705. doi: 10.1016/j.apsusc.2024.160705
TAKANO H, KIRIHATA Y, IZUMIYA K, KUMAGAI N, HABAZAKI H, HASHIMOTO K. Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation[J]. Appl. Surf. Sci., 2016,388:653-663. doi: 10.1016/j.apsusc.2015.11.187
ZHOU L L, GUO X M, HU X, ZHANG Y X, CHENG J L, GUO Q S. CO2 methanation reaction over La-modified NiAl catalysts derived from hydrotalcite-like precursors[J]. Fuel, 2024,362130888. doi: 10.1016/j.fuel.2024.130888
CHENG J L, GUO X M, MENG T, HU X, LI L, WANG Y Z, HUANG W Z. NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor[J]. Chinese J. Inorg. Chem., 2024,40(8):1592-1602.
SUN C, BEAUNIER P, DA COSTA P. Effect of ceria promotion on the catalytic performance of Ni/SBA-16 catalysts for CO2 methanation[J]. Catal. Sci. Technol., 2020,10(18):6330-6341. doi: 10.1039/D0CY00922A
ZHANG Q W, XU R N, LIU N, DAI C N, YU G Q, WANG N, CHEN B H. In situ Ce-doped catalyst derived from NiCeAl-LDHs with enhanced low-temperature performance for CO2 methanation[J]. Appl. Surf. Sci., 2022,579152204. doi: 10.1016/j.apsusc.2021.152204
GUO X P, HE H Y, TRAITANGWONG A, GONG M M, MEEYOO V, LI P, LI C S, PENG Z J, ZHANG S J. Ceria imparts superior low temperature activity to nickel catalysts for CO2 methanation[J]. Catal. Sci. Technol., 2019,9(20):5636-5650. doi: 10.1039/C9CY01186B
ZHANG J Y, REN B J, FAN G L, YANG L, LI F. Exceptional low-temperature activity of a perovskite-type AlCeO3 solid solution- supported Ni-based nanocatalyst towards CO2 methanation[J]. Catal. Sci. Technol., 2021,11(11):3894-3904. doi: 10.1039/D1CY00340B
BROOKS C S, KEHRER V J. Chemisorption of carbon monoxide on metal surfaces by pulse chromatography[J]. Anal. Chem., 1969,41(1):103-106. doi: 10.1021/ac60270a003
ZHOU G L, LIU H R, CUI K K, XIE H M, JIAO Z J, ZHANG G Z, XIONG K, ZHENG X X. Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure[J]. Int. J. Hydrog. Energy, 2017,42(25):16108-16117. doi: 10.1016/j.ijhydene.2017.05.154
JIMÉNEZ-GONZÁLEZ C, BOUKHA Z, DE RIVAS B, DELGADO J J, CAUQUI M Á, GONZÁLEZ-VELASCO J R, GUTIÉRREZ-ORTIZ J I, LÓPEZ-FONSECA R. Structural characterisation of Ni/alumina reforming catalysts activated at high temperatures[J]. Appl. Catal. A‒Gen., 2013,466:9-20. doi: 10.1016/j.apcata.2013.06.017
GUO C L, WU Y Y, QIN H Y, ZHANG J L. CO methanation over ZrO2/Al2O3 supported Ni catalysts: A comprehensive study[J]. Fuel Process. Technol., 2014,124:61-69. doi: 10.1016/j.fuproc.2014.02.017
ZHANG J, XU H Y, JIN X L, GE Q J, LI W Z. Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition[J]. Appl. Catal. A‒Gen., 2005,290(1/2):87-96.
SANZ J M, TYULIEV G T. An XPS study of thin NiO films deposited on MgO(100)[J]. Surf. Sci., 1996(367):196-202.
BIESINGER M C, PAYNE B P, LAU L W M, GERSON A, SMART R S C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems[J]. Surf. Interface Anal., 2009,41(4):324-332. doi: 10.1002/sia.3026
VENEZIA A M, BERTONCELLO R, DEGANELLO G. X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts[J]. Surf. Interface Anal., 1995,23(4):239-247. doi: 10.1002/sia.740230408
LI H, LI H X, DAI W L, WANG W J, FANG Z G, DENG J F. XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties[J]. Appl. Surf. Sci., 1999,152(1/2):25-34.
YU J S, PARK J M, KWON J H, PARK K S, CHOUNG J W, PARK M J, BAE J W. Roles of Al2O3 coating layer on an ordered mesoporous Ni/m-Al2O3 for combined steam and CO2 reforming with CH4[J]. Fuel, 2023,331125702. doi: 10.1016/j.fuel.2022.125702
HUA Y X, GUO X M, MAO D S, LU G Z, REMPEL G L, NG F T T. Single-step synthesis of dimethyl ether from biomass-derived syngas over CuO-ZnO-MOx (M=Zr, Al, Cr, Ti)/HZSM-5 hybrid catalyst: Effects of MOx[J]. Appl. Catal. A‒Gen., 2017,540:68-74. doi: 10.1016/j.apcata.2017.04.015
CASARIN M, FALCOMER D, GLISENTI A, VITTADINI A. Experimental and theoretical study of the interaction of CO2 with α-Al2O3[J]. Inorg. Chem., 2003,42(2):436-445. doi: 10.1021/ic0257773
BURGER T, KOSCHANY F, THOMYS O, KÖHLER K, HINRICHSEN O. CO2 methanation over Fe- and Mn-promoted co-precipitated Ni-Al catalysts: Synthesis, characterization and catalysis study[J]. Appl. Catal. A‒Gen., 2018,558:44-54. doi: 10.1016/j.apcata.2018.03.021
LIANG C F, ZHANG L J, ZHENG Y, ZHANG S, LIU Q, GAO G G, DONG D H, WANG Y, XU L L, HU X. Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates[J]. Fuel, 2020,262116521. doi: 10.1016/j.fuel.2019.116521
WEILACH C, SPIEL C, FÖTTINGER K, RUPPRECHTER G. Carbonate formation on Al2O3 thin film model catalyst supports[J]. Surf. Sci., 2011,605(15/16):1503-1509.
FÖTTINGER K, SCHLÖGL R, RUPPRECHTER G. The mechanism of carbonate formation on Pd-Al2O3 catalysts[J]. Chem. Commun., 2008(3):320-322. doi: 10.1039/B713161E
ALKHOORI A A, ELMUTASIM O, DABBAWALA A A, VASILIADES M A, PETALLIDOU K C, EMWAS A H, ANJUM D H, SINGH N, BAKER M A, CHARISIOU N D, GOULA M A, EFSTATHIOU A M, POLYCHRONOPOULOU K. Mechanistic features of the CeO2-modified Ni/Al2O3 catalysts for the CO2 methanation reaction: experimental and ab initio studies[J]. ACS Appl. Energy Mater., 2023,6(16):8550-8571. doi: 10.1021/acsaem.3c01437
WESTERMANN A, AZAMBRE B, BACARIZA M C, GRAÇA I, RIBEIRO M F, LOPES J M, HENRIQUES C. The promoting effect of Ce in the CO2 methanation performances on NiUSY zeolite: A FTIR in situ/operando study[J]. Catal. Today, 2017,283:74-81. doi: 10.1016/j.cattod.2016.02.031
WESTERMANN A, AZAMBRE B, BACARIZA M C, GRAÇA I, RIBEIRO M F, LOPES J M, HENRIQUES C. Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study[J]. Appl. Catal. B‒Environ., 2015,174-175:120-125. doi: 10.1016/j.apcatb.2015.02.026
LALINDE J A H, ROONGRUANGSREE P, ILSEMANN J, BÄUMER M, KOPYSCINSKI J. CO2 methanation and reverse water gas shift reaction. Kinetic study based on in situ spatially-resolved measurements[J]. Chem. Eng. J., 2020,390124629. doi: 10.1016/j.cej.2020.124629
LIN L L, GERLAK C A, LIU C, LLORCA J, YAO S Y, RUI N, ZHANG F, LIU Z Y, ZHANG S, DENG K X, MURRAY C B, RODRIGUEZ J A, SENANAYAKE S D. Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst[J]. J. Energy Chem., 2021,61:602-611. doi: 10.1016/j.jechem.2021.02.021
JIA X Y, ZHANG X S, RUI N, HU X, LIU C J. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity[J]. Appl. Catal. B‒Environ., 2019,244:159-169. doi: 10.1016/j.apcatb.2018.11.024
ZHU J, ZHANG G H, LI W H, ZHANG X B, DING F S, SONG C S, GUO X W. Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts[J]. ACS Catal., 2020,10(13):7424-7433. doi: 10.1021/acscatal.0c01526
FALBO L, VISCONTI C G, LIETTI L, SZANYI J. The effect of CO on CO2 methanation over Ru/Al2O3 catalysts: A combined steady-state reactivity and transient DRIFT spectroscopy study[J]. Appl. Catal. B‒Environ., 2019,256117791. doi: 10.1016/j.apcatb.2019.117791
KARELOVIC A, RUIZ P. Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts[J]. J. Catal., 2013,301:141-153. doi: 10.1016/j.jcat.2013.02.009
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Kailu Guo , Jinzhi Jia , Huijiao Wang , Ziyu Hao , Yinjian Chen , Ke Shi , Haixia Wu , Cailing Xu . Structural tuning and reconstruction of CeO2-coupled nickel selenides for robust water oxidation. Chinese Chemical Letters, 2025, 36(8): 110888-. doi: 10.1016/j.cclet.2025.110888
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
Yiting Huo , Xin Zhou , Feifan Zhao , Chenbin Ai , Zhen Wu , Zhidong Chang , Bicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
Junjie TANG , Yunting ZHANG , Zhengjiang LIU , Jiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421