Citation: Yanzhe WANG, Xiaoming GUO, Qiangsheng GUO, Liang LI, Bin LU, Peihang YE. Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202 shu

Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation

Figures(9)

  • A series of NiAlCex (x=0.1, 0.2, 0.4, 0.6, x was the ratio of the amount of substance of Ni to that of Al and Ce combined) catalysts was prepared with the co-precipitation method and applied for the CO2 methanation. The low-temperature catalytic activity of NiAl catalysts for CO2 methanation improved significantly with the introduction of an appropriate amount of Ce. The CO2 conversion reached 80.6% as x=0.2 under the conditions of 220 ℃, 100 kPa, and weight hourly space velocity of 24 000 mL·g-1·h-1. The incorporation of Ce weakened the Ni-Al interaction, suppressed the formation of NiAl2O4 spinel, and promoted the reduction of NiO species in the catalyst. Furthermore, it increased the specific surface area of metallic Ni, thereby facilitating H2 adsorption and activation, while also enhancing the number of basic sites on the catalyst surface to promote CO2 adsorption and activation. Stability tests demonstrated that the presence of Ce hindered the sintering and agglomeration of Ni species, thereby enhancing the catalyst stability. Insitu diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results revealed that the reaction over NiAl catalyst followed the CO intermediate route, and after introducing Ce into the NiAl catalyst, a dual pathway involving both formate and CO intermediates was observed.
  • 加载中
    1. [1]

      KIM C, YOO C J, OH H S, MIN B K, LEE U. Review of carbon dioxide utilization technologies and their potential for industrial application[J]. J. CO2 Util., 2022,65102239. doi: 10.1016/j.jcou.2022.102239

    2. [2]

      VALLURI S, CLAREMBOUX V, KAWATRA S. Opportunities and challenges in CO2 utilization[J]. J. Environ. Sci., 2022,113:322-344. doi: 10.1016/j.jes.2021.05.043

    3. [3]

      MEBRAHTU C, KREBS F, ABATE S, PERATHONER S, CENTI G, PALKOVITS R. CO2 methanation: Principles and challenges[M]// ALBONETTI S, PERATHONER S, QUADRELLI E A. Studies in surface science and catalysis: Vol. 178. [S. l. ]: Elsevier, 2019: 85-103

    4. [4]

      ASHOK J, PATI S, HONGMANOROM P, ZHANG T X, CHEN J M, KAWI S. A review of recent catalyst advances in CO2 methanation processes[J]. Catal. Today, 2020,356:471-489. doi: 10.1016/j.cattod.2020.07.023

    5. [5]

      GHAIB K, BEN-FARES F Z. Power-to-methane: A state-of-the-art review[J]. Renew. Sust. Energ. Rev., 2018,81:433-446. doi: 10.1016/j.rser.2017.08.004

    6. [6]

      BUKHARI M H, JAVED A, KAZMI S A A, ALI M, CHAUDHARY M T. Techno-economic feasibility analysis of hydrogen production by PtG concept and feeding it into a combined cycle power plant leading to sector coupling in future[J]. Energy Conv. Manag., 2023,282116814. doi: 10.1016/j.enconman.2023.116814

    7. [7]

      YANG C Y, ZHANG T Y, CHEN Y S, WANG W J, ZHUO H Y, YANG X F, HUANG Y Q. Intrinsic mechanism for carbon dioxide methanation over Ru-based nanocatalysts[J]. ACS Catal., 2023,13(17):11556-11565. doi: 10.1021/acscatal.3c02502

    8. [8]

      NOVÁK É, FODOR K, SZAILER T, OSZKÓ A, ERDÖHELYI A. CO2 hydrogenation on Rh/TiO2 previously reduced at different temperatures[J]. Top. Catal., 2002,20:107-117. doi: 10.1023/A:1016359601399

    9. [9]

      LIU J, BING W H, XUE X G, WANG F, WANG B, HE S, ZHANG Y K, WEI M. Alkaline-assisted Ni nanocatalysts with largely enhanced low‑temperature activity toward CO2 methanation[J]. Catal. Sci. Technol., 2016,6(11):3976-3983. doi: 10.1039/C5CY02026C

    10. [10]

      BACARIZA M C, BÉRTOLO R, GRAÇA I, LOPES J M, HENRIQUES C. The effect of the compensating cation on the catalytic performances of Ni/USY zeolites towards CO2 methanation[J]. J. CO2 Util., 2017,21:280-291. doi: 10.1016/j.jcou.2017.07.020

    11. [11]

      BACARIZA M C, GRAÇA I, BEBIANO S S, LOPES J M, HENRIQUES C. Magnesium as promoter of CO2 methanation on Ni-based USY zeolites[J]. Energy Fuels, 2017,31(9):9776-9789. doi: 10.1021/acs.energyfuels.7b01553

    12. [12]

      LIANG C F, HU X, WEI T, JIA P, ZHANG Z M, DONG D H, ZHANG S, LIU Q, HU G Z. Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity[J]. Int. J. Hydrog. Energy, 2019,44(16):8197-8213. doi: 10.1016/j.ijhydene.2019.02.014

    13. [13]

      GARBARINO G, KOWALIK P, RIANI P, ANTONIAK‑JURAK K, PIETA P, LEWALSKA‑GRACZYK A, LISOWSKI W, NOWAKOWSKI R, BUSCA G, PIETA I S. Improvement of Ni/Al2O3 catalysts for low-temperature CO2 methanation by vanadium and calcium oxide addition[J]. Ind. Eng. Chem. Res., 2021,60(18):6554-6564. doi: 10.1021/acs.iecr.0c05556

    14. [14]

      ZHANG Z Q, DENG S R, FANG X Z, XU J W, XU X L, WANG X. CrOx-promoted Ru/Al2O3 for CO2 methanation: Formation of surface Cr-doped RuO2 solid solution plays key roles[J]. Fuel, 2023,339127414. doi: 10.1016/j.fuel.2023.127414

    15. [15]

      TAMIMI K, ALAVI S M, REZAEI M, AKBARI E. Preparation of the Mn-Promoted NiO-Al2O3 nanocatalysts for low temperature CO2 methanation[J]. J. Energy Inst., 2021,99:48-58. doi: 10.1016/j.joei.2021.08.008

    16. [16]

      HU X, GUO X M, MENG T, GUO Q S, CHENG J L, WANG Y Z, HUANG W Z, NG F T T. NiAlFe catalysts based on hydrotalcite-like precursors for low temperature CO2 methanation: Electronic effects among components and intrinsic activity of Ni site[J]. Appl. Surf. Sci., 2024,670160705. doi: 10.1016/j.apsusc.2024.160705

    17. [17]

      TAKANO H, KIRIHATA Y, IZUMIYA K, KUMAGAI N, HABAZAKI H, HASHIMOTO K. Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation[J]. Appl. Surf. Sci., 2016,388:653-663. doi: 10.1016/j.apsusc.2015.11.187

    18. [18]

      ZHOU L L, GUO X M, HU X, ZHANG Y X, CHENG J L, GUO Q S. CO2 methanation reaction over La-modified NiAl catalysts derived from hydrotalcite-like precursors[J]. Fuel, 2024,362130888. doi: 10.1016/j.fuel.2024.130888

    19. [19]

      CHENG J L, GUO X M, MENG T, HU X, LI L, WANG Y Z, HUANG W Z. NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor[J]. Chinese J. Inorg. Chem., 2024,40(8):1592-1602.

    20. [20]

      SUN C, BEAUNIER P, DA COSTA P. Effect of ceria promotion on the catalytic performance of Ni/SBA-16 catalysts for CO2 methanation[J]. Catal. Sci. Technol., 2020,10(18):6330-6341. doi: 10.1039/D0CY00922A

    21. [21]

      ZHANG Q W, XU R N, LIU N, DAI C N, YU G Q, WANG N, CHEN B H. In situ Ce-doped catalyst derived from NiCeAl-LDHs with enhanced low-temperature performance for CO2 methanation[J]. Appl. Surf. Sci., 2022,579152204. doi: 10.1016/j.apsusc.2021.152204

    22. [22]

      GUO X P, HE H Y, TRAITANGWONG A, GONG M M, MEEYOO V, LI P, LI C S, PENG Z J, ZHANG S J. Ceria imparts superior low temperature activity to nickel catalysts for CO2 methanation[J]. Catal. Sci. Technol., 2019,9(20):5636-5650. doi: 10.1039/C9CY01186B

    23. [23]

      ZHANG J Y, REN B J, FAN G L, YANG L, LI F. Exceptional low-temperature activity of a perovskite-type AlCeO3 solid solution- supported Ni-based nanocatalyst towards CO2 methanation[J]. Catal. Sci. Technol., 2021,11(11):3894-3904. doi: 10.1039/D1CY00340B

    24. [24]

      BROOKS C S, KEHRER V J. Chemisorption of carbon monoxide on metal surfaces by pulse chromatography[J]. Anal. Chem., 1969,41(1):103-106. doi: 10.1021/ac60270a003

    25. [25]

      ZHOU G L, LIU H R, CUI K K, XIE H M, JIAO Z J, ZHANG G Z, XIONG K, ZHENG X X. Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure[J]. Int. J. Hydrog. Energy, 2017,42(25):16108-16117. doi: 10.1016/j.ijhydene.2017.05.154

    26. [26]

      JIMÉNEZ-GONZÁLEZ C, BOUKHA Z, DE RIVAS B, DELGADO J J, CAUQUI M Á, GONZÁLEZ-VELASCO J R, GUTIÉRREZ-ORTIZ J I, LÓPEZ-FONSECA R. Structural characterisation of Ni/alumina reforming catalysts activated at high temperatures[J]. Appl. Catal. A‒Gen., 2013,466:9-20. doi: 10.1016/j.apcata.2013.06.017

    27. [27]

      GUO C L, WU Y Y, QIN H Y, ZHANG J L. CO methanation over ZrO2/Al2O3 supported Ni catalysts: A comprehensive study[J]. Fuel Process. Technol., 2014,124:61-69. doi: 10.1016/j.fuproc.2014.02.017

    28. [28]

      ZHANG J, XU H Y, JIN X L, GE Q J, LI W Z. Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition[J]. Appl. Catal. A‒Gen., 2005,290(1/2):87-96.

    29. [29]

      SANZ J M, TYULIEV G T. An XPS study of thin NiO films deposited on MgO(100)[J]. Surf. Sci., 1996(367):196-202.

    30. [30]

      BIESINGER M C, PAYNE B P, LAU L W M, GERSON A, SMART R S C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems[J]. Surf. Interface Anal., 2009,41(4):324-332. doi: 10.1002/sia.3026

    31. [31]

      VENEZIA A M, BERTONCELLO R, DEGANELLO G. X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts[J]. Surf. Interface Anal., 1995,23(4):239-247. doi: 10.1002/sia.740230408

    32. [32]

      LI H, LI H X, DAI W L, WANG W J, FANG Z G, DENG J F. XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties[J]. Appl. Surf. Sci., 1999,152(1/2):25-34.

    33. [33]

      YU J S, PARK J M, KWON J H, PARK K S, CHOUNG J W, PARK M J, BAE J W. Roles of Al2O3 coating layer on an ordered mesoporous Ni/m-Al2O3 for combined steam and CO2 reforming with CH4[J]. Fuel, 2023,331125702. doi: 10.1016/j.fuel.2022.125702

    34. [34]

      HUA Y X, GUO X M, MAO D S, LU G Z, REMPEL G L, NG F T T. Single-step synthesis of dimethyl ether from biomass-derived syngas over CuO-ZnO-MOx (M=Zr, Al, Cr, Ti)/HZSM-5 hybrid catalyst: Effects of MOx[J]. Appl. Catal. A‒Gen., 2017,540:68-74. doi: 10.1016/j.apcata.2017.04.015

    35. [35]

      CASARIN M, FALCOMER D, GLISENTI A, VITTADINI A. Experimental and theoretical study of the interaction of CO2 with α-Al2O3[J]. Inorg. Chem., 2003,42(2):436-445. doi: 10.1021/ic0257773

    36. [36]

      BURGER T, KOSCHANY F, THOMYS O, KÖHLER K, HINRICHSEN O. CO2 methanation over Fe- and Mn-promoted co-precipitated Ni-Al catalysts: Synthesis, characterization and catalysis study[J]. Appl. Catal. A‒Gen., 2018,558:44-54. doi: 10.1016/j.apcata.2018.03.021

    37. [37]

      LIANG C F, ZHANG L J, ZHENG Y, ZHANG S, LIU Q, GAO G G, DONG D H, WANG Y, XU L L, HU X. Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates[J]. Fuel, 2020,262116521. doi: 10.1016/j.fuel.2019.116521

    38. [38]

      WEILACH C, SPIEL C, FÖTTINGER K, RUPPRECHTER G. Carbonate formation on Al2O3 thin film model catalyst supports[J]. Surf. Sci., 2011,605(15/16):1503-1509.

    39. [39]

      FÖTTINGER K, SCHLÖGL R, RUPPRECHTER G. The mechanism of carbonate formation on Pd-Al2O3 catalysts[J]. Chem. Commun., 2008(3):320-322. doi: 10.1039/B713161E

    40. [40]

      ALKHOORI A A, ELMUTASIM O, DABBAWALA A A, VASILIADES M A, PETALLIDOU K C, EMWAS A H, ANJUM D H, SINGH N, BAKER M A, CHARISIOU N D, GOULA M A, EFSTATHIOU A M, POLYCHRONOPOULOU K. Mechanistic features of the CeO2-modified Ni/Al2O3 catalysts for the CO2 methanation reaction: experimental and ab initio studies[J]. ACS Appl. Energy Mater., 2023,6(16):8550-8571. doi: 10.1021/acsaem.3c01437

    41. [41]

      WESTERMANN A, AZAMBRE B, BACARIZA M C, GRAÇA I, RIBEIRO M F, LOPES J M, HENRIQUES C. The promoting effect of Ce in the CO2 methanation performances on NiUSY zeolite: A FTIR in situ/operando study[J]. Catal. Today, 2017,283:74-81. doi: 10.1016/j.cattod.2016.02.031

    42. [42]

      WESTERMANN A, AZAMBRE B, BACARIZA M C, GRAÇA I, RIBEIRO M F, LOPES J M, HENRIQUES C. Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study[J]. Appl. Catal. B‒Environ., 2015,174-175:120-125. doi: 10.1016/j.apcatb.2015.02.026

    43. [43]

      LALINDE J A H, ROONGRUANGSREE P, ILSEMANN J, BÄUMER M, KOPYSCINSKI J. CO2 methanation and reverse water gas shift reaction. Kinetic study based on in situ spatially-resolved measurements[J]. Chem. Eng. J., 2020,390124629. doi: 10.1016/j.cej.2020.124629

    44. [44]

      LIN L L, GERLAK C A, LIU C, LLORCA J, YAO S Y, RUI N, ZHANG F, LIU Z Y, ZHANG S, DENG K X, MURRAY C B, RODRIGUEZ J A, SENANAYAKE S D. Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst[J]. J. Energy Chem., 2021,61:602-611. doi: 10.1016/j.jechem.2021.02.021

    45. [45]

      JIA X Y, ZHANG X S, RUI N, HU X, LIU C J. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity[J]. Appl. Catal. B‒Environ., 2019,244:159-169. doi: 10.1016/j.apcatb.2018.11.024

    46. [46]

      ZHU J, ZHANG G H, LI W H, ZHANG X B, DING F S, SONG C S, GUO X W. Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts[J]. ACS Catal., 2020,10(13):7424-7433. doi: 10.1021/acscatal.0c01526

    47. [47]

      FALBO L, VISCONTI C G, LIETTI L, SZANYI J. The effect of CO on CO2 methanation over Ru/Al2O3 catalysts: A combined steady-state reactivity and transient DRIFT spectroscopy study[J]. Appl. Catal. B‒Environ., 2019,256117791. doi: 10.1016/j.apcatb.2019.117791

    48. [48]

      KARELOVIC A, RUIZ P. Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts[J]. J. Catal., 2013,301:141-153. doi: 10.1016/j.jcat.2013.02.009

  • 加载中
    1. [1]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    3. [3]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    4. [4]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Kailu GuoJinzhi JiaHuijiao WangZiyu HaoYinjian ChenKe ShiHaixia WuCailing Xu . Structural tuning and reconstruction of CeO2-coupled nickel selenides for robust water oxidation. Chinese Chemical Letters, 2025, 36(8): 110888-. doi: 10.1016/j.cclet.2025.110888

    7. [7]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    8. [8]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    9. [9]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    10. [10]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    15. [15]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    16. [16]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    17. [17]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(10)
  • Abstract views(324)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return