Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method
- Corresponding author: Hao XIN, iamhxin@njupt.edu.cn
Citation:
Chuan′an DING, Weibo YAN, Shaoying WANG, Hao XIN. Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(9): 1755-1764.
doi:
10.11862/CJIC.20250198
GREEN M A, DUNLOP E D, YOSHITA M, KOPIDAKIS N, BOTHE K, SIEFER G, HAO X J, JIANG J Y. Solar cell efficiency tables (version 66)[J]. Prog. Photovoltaics, 2025, 23(7): 425-441
RÜHLE S. Tabulated values of the Shockley-Queisser limit for single junction solar cells[J]. Sol. Energy, 2016, 130: 139-147
doi: 10.1016/j.solener.2016.02.015
MARKVART T. Shockley: Queisser detailed balance limit after 60 years[J]. Wiley Interdiscip. Rev. Energy Environ., 2022, 11(4): e430
VOS A D. Detailed balance limit of the efficiency of tandem solar cells[J]. J. Phys. D: Appl. Phys., 1980, 13(5): 839-846
doi: 10.1088/0022-3727/13/5/018
MEILLAUD F, SHAH A, DROZ C, VALLST S E, MIAZZA C. Efficiency limits for single-junction and tandem solar cells[J]. Sol. Energy Mater. Sol. Cells, 2006, 90(18/19): 2952-2959
LIU J, HE Y C, DING L, ZHANG H, LI Q Y, JIA L B, YU J, LAU T W, LI M H, QIN Y, GU X B, ZHANG F, LI Q, YANG Y, ZHAO S S, WU X Y, LIU J, LIU T, GAO Y J, WANG Y L, DONG X, CHEN H, LI P, ZHOU T X, YANG M, RU X N, PENG F G, YIN S, QU M H, ZHAO D M, ZHAO Z G, LI M L, GUO P H, YAN H, XIAO C X, XIAO P, YIN J, ZHANG X H, LI Z G, HE B, XU X X. Perovskite/silicon tandem solar cells with bilayer interface passivation[J]. Nature, 2024, 635(8039): 596-603
doi: 10.1038/s41586-024-07997-7
WANG Y R, LIN R X, LIU C S, WANG X Y, CHOSY C, HARUTA Y, BUI A D, LI M H, SUN H F, ZHENG X T, LUO H W, WU P, GAO H, SUN W J, NIE Y F, ZHU H S, ZHOU K, NGUYEN H T, LUO X, LI L D, XIAO C X, SAIDAMINOV M I, STRANKS S D, ZHANG L J, TAN H R. Homogenized contact in all-perovskite tandems using tailored 2D perovskite[J]. Nature, 2024, 635(8040): 867-873
doi: 10.1038/s41586-024-08158-6
SHUKLA S, SOOD M, ADELEYE D, PEEDLE S, KUSCH G, DAHLIAH D, MELCHIORRE M, RIGNANESE G M, HAUTIER G, OLIVER R, SIEBENTRITT S. Over 15% efficient wide-band-gap Cu(In, Ga)S2 solar cell: Suppressing bulk and interface recombination through composition engineering[J]. Joule, 2021, 5(7): 1816-1831
doi: 10.1016/j.joule.2021.05.004
KAZMERSKI L L, WHITE F R, AYYAGARI M S, JUANG Y J, PATTERSON R P. Growth and characterization of thin-film compound semiconductor photovoltaic heterojunctions[J]. J. Vac. Sci. Technol. A, 1977, 14(1): 65-68
doi: 10.1116/1.569173
WATANABE T, MATSUI M. Improved efficiency of CuInS2-based solar cells without potassium cyanide process[J]. Jpn. J. Appl. Phys., 1999, 38(12A): L1379-L1381
doi: 10.1143/JJAP.38.L1379
HIROI H, IWATA Y, ADACHI S, SUGIMOTO H, YAMADA A. New world-record efficiency for pure-sulfide Cu(In, Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process[J]. IEEE J. Photovolt., 2016, 6(3): 760-763
doi: 10.1109/JPHOTOV.2016.2537540
MERDES S, ABOU-RAS D, MAINZ R, KLENK R, LUX-STEINER M C, MEEDER A, SCHOCK H W, KLAER J. CdS/Cu(In, Ga)S2 based solar cells with efficiencies reaching 12.9% prepared by a rapid thermal process[J]. Prog. Photovoltaics, 2013, 21(1): 88-93
doi: 10.1002/pip.2165
HIROI H, IWATA Y, HORIGUCHI K, SUGIMOTO H. 960-mV open-circuit voltage chalcopyrite solar cell[J]. IEEE J. Photovolt., 2015, 6(1): 309-312
OH Y, WOO K, LEE D, LEE H, KIM K, KIM I, ZHONG Z, JEONG S, MOON J. Role of anions in aqueous sol-gel process enabling flexible Cu(In, Ga)S2 thin-film solar cells[J]. ACS Appl. Mater. Interfaces, 2014, 6(20): 17740-17747
doi: 10.1021/am504194t
BARANGE N, CHU V B, NAM M, AHN I H, KIM Y D, HAN I K, MIN B K, KO D H. Ordered nanoscale heterojunction architecture for enhanced solution-based CuInGaS2 thin film solar cell performance[J]. Adv. Energy Mater., 2016, 6(24): 1601114
doi: 10.1002/aenm.201601114
IKEDA S, NONOGAKI M, SEPTINA W, GUNAWAN G, MATSUMURA M. Fabrication of CuInS2 and Cu(In, Ga)S2 thin films by a facile spray pyrolysis and their photovoltaic and photoelectro-chemical properties[J]. Catal. Sci. Technol., 2013, 3(7): 1849-1854
doi: 10.1039/c3cy00020f
SOHN S H, HAN N S, YONG J P, PARK S M, AN H S, KIM D W, MIN B K, SONG J K. Band gap grading and photovoltaic performance of solution-processed Cu(In, Ga)S2 thin-film solar cells[J]. Phys. Chem. Chem. Phys., 2014, 16(48): 27112-27118
doi: 10.1039/C4CP03243H
LI X Y, MA C F, LIU N Y, XIANG C X, WEI S X, YAN W B, HUANG W, XIN H. Back contact plasma treatment enables 14.5% efficient solution-processed CuIn(S, Se)2 solar cells[J]. Adv. Funct. Mater., 2024, 34(8): 2310124
doi: 10.1002/adfm.202310124
HAN S Q, JIANG J J, LIU X G, LI B Y, ZHANG K J, HAO S S, YU S T, YAN W B, XIN H. Chemical-bath-deposited Zn(S, O) buffer achieves 12.0% efficient solution-processed CIGS solar cells[J]. ACS Appl. Energy Mater., 2022, 5: 12336-12346
doi: 10.1021/acsaem.2c01926
JIANG J J, YU S T, GONG Y C, XIN H. 10.3% efficient CuIn(S, Se)2 solar cells from DMF molecular solution with the absorber selenized under high argon pressure[J]. Sol. RRL, 2018, 2(6): 1800044
doi: 10.1002/solr.201800044
JIANG J J, GIRIDHARAGOPAL R, JEDLICKA E, SUN K W, YU S T, WU S P, GONG Y C, YAN W B, GINGER D S, GREEN M A, HAO X J, HUANG W, XIN H. Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution[J]. Nano Energy, 2020, 69: 104438
doi: 10.1016/j.nanoen.2019.104438
WU S P, JIANG J J, YU S T, GONG Y C, YAN W B, XIN H, HUANG W. Over 12% efficient low-bandgap CuIn(S, Se)2 solar cells with the absorber processed from aqueous metal complexes solution in air[J]. Nano Energy, 2019, 62: 818-822
doi: 10.1016/j.nanoen.2019.06.010
KWON I, NAGAI T, ISHIZUKA S, TAMPO H, SHIBATA H, KIM S, KIM Y. Improving the performance of pure sulfide Cu(In, Ga)S2 solar cells via injection annealing system[J]. Curr. Appl Phys., 2021, 22: 71-76
doi: 10.1016/j.cap.2020.12.004
ELANGO I, SELVAMANI M, RAMAMURTHY P C, KESAVAN A V. Studying VOC in lead free inorganic perovskite photovoltaics by tuning energy bandgap and defect density[J]. Ceram. Int., 2022, 48(19): 29414-29420
doi: 10.1016/j.ceramint.2022.06.125
BELGHACHI A, LIMAM N. Effect of the absorber layer band-gap on CIGS solar cell[J]. Chin. J. Phys., 2017, 55(4): 1127-1134
doi: 10.1016/j.cjph.2017.01.011
GHORBANI T, ZAHEDIFAR M, MORADI M, GHANBARI E. Influence of affinity, band gap and ambient temperature on the efficiency of CIGS solar cells[J]. Optik, 2020, 223: 165541
doi: 10.1016/j.ijleo.2020.165541
HAN A J, SUN Y, ZHANG Y, LIU X H, MENG F Y, LIU Z X. Comparative study of the role of Ga in CIGS solar cells with different thickness[J]. Thin Solid Films, 2016, 598: 189-194
doi: 10.1016/j.tsf.2015.12.020
ZHAO Y H, CHEN X Y, CHEN S, ZHENG Z H, SU Z H, MA H L, ZHANG X H, LIANG G X. Energy band alignment and defect synergistic regulation enable air-solution-processed kesterite solar cells with the lowest VOC deficit[J]. Adv. Mater., 2025, 37(8): 2409327
doi: 10.1002/adma.202409327
CARRON R, ANDRES C, AVANCINI E, FEURER T, NISHIWAKI S, PISONI S, FU F, LINGG M, ROMANYUK Y E, BUECHELER S, TIWARI A N. Bandgap of thin film solar cell absorbers: A comparison of various determination methods[J]. Thin Solid Films, 2019, 669: 482-486
doi: 10.1016/j.tsf.2018.11.017
LOMUSCIO A, RÖDEL T, SCHWARZ T, GAULT B, MELCHIORRE M, RAABE D, SIEBENTRITT S. Quasi-Fermi-level splitting of Cu-poor and Cu-rich CuInS2 absorber layers[J]. Phys. Rev. Appl., 2019, 11(5): 054052
doi: 10.1103/PhysRevApplied.11.054052
LOMUSCIO A, RÖDEL T, SCHWARZ T, GAULT B, MELCHIORRE M, RAABE D, SIEBENTRITT S. How photoluminescence can predict the efficiency of solar cells[J]. J. Phys. Mater., 2021, 4(4): 042010
doi: 10.1088/2515-7639/ac266e
SHIRAKATA S, NAKADA T. Time-resolved photoluminescence in Cu(In, Ga)Se2 thin films and solar cells[J]. Thin Solid Films, 2007, 515(15): 6151-6154
doi: 10.1016/j.tsf.2006.12.040
SIEMER K, KLAER J, LUCK I, BRUNS J, KLENK R, BRÄUNIG D. Efficient CuInS2 solar cells from a rapid thermal process (RTP)[J]. Sol. Energy Mater. Sol. Cells, 2001, 67(1/2/3/4): 159-166
HE G J, YAN C, LI J J, YUAN X J, SUN K W, HUANG J L, SUN H, HE M R, ZHANG Y F, STRIDE J A, GREEN M A, HAO X J. 11.6% efficient pure sulfide Cu(In, Ga)S2 solar cell through a Cu-deficient and KCN-free process[J]. ACS Appl. Energy Mater., 2020, 3(12): 11974-11980
doi: 10.1021/acsaem.0c02158
CHANG Y H, CARRON R, OCHOA M, BOZAL-GINESTA C, TIWARI A N, DURRANT J R, STEIER L. Insights from transient absorption spectroscopy into electron dynamics along the Ga‑ gradient in Cu(In, Ga)Se2 solar cells[J]. Adv. Energy Mater., 2021, 11(8): 2003446
doi: 10.1002/aenm.202003446
LI J J, WANG H X, LUO M, TANG J, CHEN C, LIU W, LIU F F, SUN Y, HAN J B, ZHANG Y. 10% efficiency Cu2ZnSn(S, Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width[J]. Sol. Energy Mater. Sol. Cells, 2016, 149: 242-249
doi: 10.1016/j.solmat.2016.02.002
GONG Y C, ZHU Q, LI B Y, WANG S S, DUAN B W, LOU L C, XIANG C X, JEDLICKA E, GIRIDHARAGOPAL R, ZHOU Y G, DAI Q, YAN W B, CHEN S Y, MENG Q B, XIN H. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells[J]. Nat. Energy, 2022, 7(10): 966-977
doi: 10.1038/s41560-022-01132-4
HEATH J, ZABIEROWSKI P. Capacitance spectroscopy of thin-film solar cells[M]//ABOURAS D, KIRCHARTZ T, RAU U. Advanced characterization techniques for thin film solar cells: Vol. 1 and 2. 2nd ed. [S. l. ]: Wiley-VCH, 2016: 93-119
WU T, CHEN S, SU Z H, WANG Z, LUO P, ZHENG Z H, LUO J T, MA H L, ZHANG X H, LIANG G X. Heat treatment in an oxygen-rich environment to suppress deep-level traps in Cu2ZnSnS4 solar cell with 11.51% certified efficiency[J]. Nat. Energy, 2025, 10(5): 1-11
SU Z H, LIANG G X, FAN P, LUO J T, ZHENG Z H, XIE Z G, WANG W, CHEN S, HU J G, WEI Y D, YAN C, HUANG J L, HAO X J, LIU F Y. Device post annealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Adv. Mater., 2020, 32(32): 2000121
doi: 10.1002/adma.202000121
KELLER J, KISELMAN K, DONZEL-GARGAND O, MARTIN N M, BABUCCI M, LUNDBERG O, WALLIN E, STOLT L, EDOFF M. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency[J]. Nat. Energy, 2024, 9(4): 467-478
doi: 10.1038/s41560-024-01472-3
ZHAO Y H, YUAN S J, KOU D X, ZHOU Z J, WANG X S, XIAO H Q, DENG Y Q, CUI C C, CHANG Q Q, WU S X. High efficiency CIGS solar cells by bulk defect passivation through Ag substituting strategy[J]. ACS Appl. Mater. Interfaces, 2020, 12(11): 12717-12726
doi: 10.1021/acsami.9b21354
HAO S S, YU S T, LIU X G, LI B Y, HAN S Q, XIN H, YAN W B, HUANG W. Effect of K doping on the performance of aqueous solution-processed Cu(In, Ga)Se2 solar cell[J]. Adv. Energy Sustain. Res., 2022, 3(7): 2200006
doi: 10.1002/aesr.202200006
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
Yawen Guo , Dawei Li , Yang Gao , Cuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050
Zongsheng LI , Yichao WANG , Yujie WANG , Wenhao ZHU , Xiaoyao YIN , Wudan YANG , Songzhi ZHENG , Weihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075
Hongyao Li , Youyan Liu , Luwei Dai , Min Yang , Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104
Lancanghong Chen , Xingtai Yu , Tianlei Zhao , Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Fengying Zhang , Yanglin Mei , Yuman Jiang , Shenshen Zheng , Kaibo Zheng , Ying Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118
(a) VOC, (b) JSC, (c) FF, and (d) PCE; The statistical data are based on approximately 30 devices.
In b: X represents the distance between the testing area and the top of the absorption layer.