Citation: Yue LI, Ziqi LIU, Ke FENG, Yingdan LI, Yue NING, Li SHEN, Jitao LU, Qingguo MENG, Min WANG, Haiying WANG. Advances in electrocatalytic and photocatalytic CO2 conversion to value-added chemicals using copper-based covalent organic frameworks[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(1): 1-22. doi: 10.11862/CJIC.20250197 shu

Advances in electrocatalytic and photocatalytic CO2 conversion to value-added chemicals using copper-based covalent organic frameworks

  • Corresponding author: Haiying WANG, wanghaiying@nju.edu.cn
  • Received Date: 9 June 2025
    Revised Date: 19 October 2025

Figures(18)

  • CO2 reduction technology can promote the resource utilization of carbon and help alleviate global warming and energy supply pressure. It is an effective way to achieve energy conversion and utilization. Covalent organic frameworks (COFs) are porous crystalline materials formed by connecting organic monomers through covalent bonds. They have the characteristics of functional diversity and rich chemical properties. Their advantages, such as high porosity, a wide range of visible light absorption, and excellent charge separation efficiency, give them good potential in CO2 capture, separation, and conversion. Currently, Cu is a key metal in the catalytic CO2 reduction reaction (CO2RR) for the preparation of high-value-added chemicals. The preparation of highly stable and large-pore Cu-based COFs using COFs as an ideal sacrificial template for loading Cu can be used to develop high-performance electrocatalysts and photocatalysts. In this review, we discuss the latest advancements in this field, including the development of various Cu-based COFs and their applications as catalysts for CO2RR. Here, we mainly introduce the synthesis strategies, some important characterization information, and the applications of electrocatalytic and photocatalytic CO2 conversion using these previously reported Cu-based COFs.
  • 加载中
    1. [1]

      FAN L, XIA C, YANG F Q, WANG J, WANG H T, LU Y Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products[J]. Sci. Adv., 2020, 6: eaay3111  doi: 10.1126/sciadv.aay3111

    2. [2]

      HAN N, DING P, HE L, LI Y Y, LI Y G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate[J]. Adv. Energy Mater., 2019, 10: 1902338

    3. [3]

      YAN Y L, BORHANI T N, SUBRAVETI S G, PAI K N, PRASAD V, RAJENDRAN A, NKULIKIYINKA P, ASIBOR J O, ZHANG Z N, SHAO D, WANG L J, ZHANG W B, YAN Y, AMPOMAH W, YOU J Y, WANG M H, ANTHONY E J, MANOVIC V, CLOUGH P T. Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS)—A state-of-the-art review[J]. Energy Environ. Sci., 2021, 14: 6122-6157  doi: 10.1039/D1EE02395K

    4. [4]

      HE C H, DUAN D L, LOW J X, BAI Y, JIANG Y W, WANG X Y, CHEN S M, LONG R, SONG L, XIONG Y J. Cu2-xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion[J]. Nano Res., 2023, 16: 4494-4498  doi: 10.1007/s12274-021-3532-7

    5. [5]

      KIBRIA M G, EDWARDS J P, GABARDO C M, DINH C T, SEIFITOKALDANI A, SINTON D, SARGENT E H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design[J]. Adv. Mater., 2019, 31: 1807166  doi: 10.1002/adma.201807166

    6. [6]

      LIM J W, DONG W J, PARK J Y, HONG D M, LEE J L. Spontaneously formed CuSx catalysts for selective and stable electrochemical reduction of industrial CO2 gas to formate[J]. ACS Appl. Mater. Interfaces, 2020, 12: 22891-22900  doi: 10.1021/acsami.0c03606

    7. [7]

      KURISINGAL J F, KIM H, CHOE H J, CHANG S H. Covalent organic framework-based catalysts for efficient CO2 utilization reactions[J]. Coord. Chem. Rev., 2022, 473: 214835  doi: 10.1016/j.ccr.2022.214835

    8. [8]

      WANG H Y, SU J, ZUO J L. Porous crystalline materials based on tetrathiafulvalene and its analogues: Assembly, charge transfer, and applications[J]. Acc. Chem. Res., 2024, 57: 1851-1869  doi: 10.1021/acs.accounts.4c00228

    9. [9]

      ZHU X L, ZHOU E L, TAI X S, ZONG H B, YI J J, YUAN Z M, ZHAO X L, HUANG P, XU H, JIANG Z Y. g-C3N4 S-scheme homojunction through van der Waals interface regulation by intrinsic polymerization tailoring for enhanced photocatalytic H2 evolution and CO2 reduction[J]. Angew. Chem.‒Int. Edit., 2025, 64: e202425439  doi: 10.1002/anie.202425439

    10. [10]

      ZHU X L, ZONG H B, CAMILO J V P, MIAO H H, SUN W, YUAN Z M, WANG S H, ZENG G X, XU H, JIANG Z Y, OZIN G A. Supercharged CO2 photothermal catalytic methanation: High conversion, rate, and selectivity[J]. Angew. Chem.‒Int. Edit., 2023, 135: e202218694  doi: 10.1002/ange.202218694

    11. [11]

      ZUO C, SU Q, JIANG Z Y. Advances in the application of Bi-based compounds in photocatalytic reduction of CO2[J]. Molecules, 2023, 28: 3982  doi: 10.3390/molecules28103982

    12. [12]

      ZUO C, SU Q, YAN X Y. Research progress of Co-catalysts in photocatalytic CO2 reduction: A review of developments, opportunities, and directions[J]. Processes, 2023, 11: 867  doi: 10.3390/pr11030867

    13. [13]

      WANG L H, TAI X S. Synthesis, structural characterization, Hirschfeld surface analysis and photocatalytic CO2 reduction activity of a new dinuclear Gd(Ⅲ) complex with 6-phenylpyridine-2-carboxylic acid and 1, 10-phenanthroline ligands[J]. Molecules, 2023, 28: 7595  doi: 10.3390/molecules28227595

    14. [14]

      TAI X S, YAN X H, WANG L H. Synthesis, structural characterization, Hirschfeld surface analysis, density functional theory, and photocatalytic CO2 reduction activity of a new Ca(Ⅱ) complex with a bis-Schiff base ligand[J]. Molecules, 2024, 29: 047

    15. [15]

      DONG H, CHE H T, BAI L W, ZHANG N N, TIAN Y Q, LI B Z, WANG Y, ZHANG X, ZHANG F M. Benzotrithiophene-based covalent organic frameworks with rhenium modified for artificial photosynthetic CO2 reduction[J]. Inorg. Chem., 2024, 63: 24421-24428  doi: 10.1021/acs.inorgchem.4c04599

    16. [16]

      MANDAL A, KARGUPTA K. Cu-doped 2D-Bi2MoO6 nanoribbon/rGO photocatalysts for selective ethanol production by photocatalytic CO2 reduction[J]. ACS Appl. Nano Mater., 2025, 8: 3471-3486  doi: 10.1021/acsanm.4c06608

    17. [17]

      WANG J X, GUO S E, XU C, JIANG Y Q, WU X M, YU P, XIAO Y T, SONG R J. Zinc-porphyrin conjugated polymer nanosheets with accelerated charge transfer dynamics for selective photocatalytic CO2 reduction to CH4[J]. ACS Appl. Nano Mater., 2025, 8: 2022-2032  doi: 10.1021/acsanm.4c06800

    18. [18]

      XIE K L, WU L P, LIAO Y Q, HU J J, LU K Q, WEN H R, HUO J R. Highly stable lanthanide-organic frameworks based on {Ln6O8} clusters with photocatalytic reduction of CO2 to CO[J]. Inorg. Chem., 2025, 64: 638-645  doi: 10.1021/acs.inorgchem.4c03799

    19. [19]

      YAN Y K, WANG Y, PENG C X, WANG J, WANG X S, SHI L. Single-atom Ni sites with asymmetric coordination structures for efficient photocatalytic CO2 reduction[J]. ACS Sustain. Chem. Eng., 2025, 13: 1628-1636  doi: 10.1021/acssuschemeng.4c08332

    20. [20]

      YANG J L, CHEN Z H, ZHANG L, ZHANG Q C. Covalent organic frameworks for photocatalytic reduction of carbon dioxide: A review[J]. ACS Nano, 2024, 18: 21804-21835  doi: 10.1021/acsnano.4c06783

    21. [21]

      ZHANG J J, ZHENG M, WU Y, XIONG J, LI S Z, JIANG W, LIU Z, DI J. Strongly coupled interface in electrostatic self-assembly covalent triazine framework/Bi19S27Br3 for high-efficiency CO2 photoreduction[J]. ACS Nano, 2025, 19: 2759-2768  doi: 10.1021/acsnano.4c15225

    22. [22]

      ZHANG H Y, SU Q. Recent advances of indium-based sulfides in photocatalytic CO2 reduction[J]. ACS Omega, 2025, 10: 8793-8815  doi: 10.1021/acsomega.4c09487

    23. [23]

      ZHU Y R, XUE Y L, WANG Z, CHAO D B. Robust noble metal-free photoconversion of CO2 to CO with a molecule/MOF hybrid catalyst for straightforward two-chamber organic carbonylation[J]. ACS Catal., 2025, 15: 3546-3557  doi: 10.1021/acscatal.4c07343

    24. [24]

      LIU H, GUO R T, YAN J S, GUO S H, YU L Q, PAN W G. Progress and prospect of application of two-dimensional materials in electrochemical CO2 reduction: A review[J]. Energy Fuels, 2024, 38: 16010-16025  doi: 10.1021/acs.energyfuels.4c03022

    25. [25]

      LIU J W, PENG D, LIU S J, WEN H R, ZHU Z H, ZHAO J, CHEN J L. New insight into the conjugation effect of tetranuclear copper(Ⅰ) cluster catalysts for efficient electrocatalytic reduction of CO2 into CH4[J]. ACS Sustain. Chem. Eng., 2025, 13: 2564-2573  doi: 10.1021/acssuschemeng.4c09723

    26. [26]

      MEI B B, MAO J N, LIANG Z F, SUN F F, YANG S, LI J; MA J Y, SONG F, ZHENG J. Reversible angle distortion-dependent electrochemical CO2 reduction on cobalt phthalocyanine[J]. J. Am. Chem. Soc., 2025, 147: 5819-5827  doi: 10.1021/jacs.4c14409

    27. [27]

      MENG F F, DONG M, HE J T, GU J X, YAO X H, SUN C Y, WANG X L, SU Z M. Metal cluster-based crystalline materials for the electrocatalytic reduction of carbon dioxide[J]. ACS Materials Lett., 2025, 7: 229-249  doi: 10.1021/acsmaterialslett.4c02064

    28. [28]

      SHAO W W, FAN W Y, GUAN H M, ZU X L, JIAO X C. Fundamentals and perspectives of positively charged single-metal site catalysts for CO2 electroreduction[J]. ACS Appl. Mater. Interfaces, 2025, 17: 10276-10291  doi: 10.1021/acsami.4c21988

    29. [29]

      XU H S, DING S Y, AN W K, WU H, WANG W. Constructing crystalline covalent organic frameworks from chiral building blocks[J]. J. Am. Chem. Soc., 2016, 138: 11489-11492  doi: 10.1021/jacs.6b07516

    30. [30]

      ZHANG J, HAN X, WU X W, LIU Y, CUI Y. Chiral DHIP- and pyrrolidine-based covalent organic frameworks for asymmetric catalysis[J]. ACS Sustain. Chem. Eng., 2019, 7: 5065-5071  doi: 10.1021/acssuschemeng.8b05887

    31. [31]

      ZHANG J, HAN X, WU X W, LIU Y, CUI Y. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis[J]. J. Am. Chem. Soc., 2017, 139: 8277-8285  doi: 10.1021/jacs.7b03352

    32. [32]

      DONG B, WANG L Y, ZHAO S, GE R L, SONG X D, WANG Y, GAO Y A. Immobilization of ionic liquids to covalent organic frameworks for catalyzing the formylation of amines with CO2 and phenylsilane[J]. Chem. Commun., 2016, 52: 7082-7085  doi: 10.1039/C6CC03058K

    33. [33]

      TAN K T, GHOSH S, WANG Z Y, WEN F X, RODRÍGUEZ-SAN-MIGUEL D, FENG J, HUANG N, WANG W, ZAMORA F, FENG X L, THOMAS A, JIANG D L. Covalent organic frameworks[J]. Nat. Rev. Methods Primers, 2023, 3: 1  doi: 10.1038/s43586-022-00181-z

    34. [34]

      HUANG N, WANG P, JIANG D. Covalent organic frameworks: A materials platform for structural and functional designs[J]. Nat. Rev. Mater., 2016, 1: 16068  doi: 10.1038/natrevmats.2016.68

    35. [35]

      GUAN X, CHEN F, FANG Q, QIU S. Design and applications of three dimensional covalent organic frameworks[J]. Chem. Soc. Rev., 2020, 49: 1357-1384  doi: 10.1039/C9CS00911F

    36. [36]

      CÔTÉ A P, BENIN A I, OCKWIG N W, O′KEEFFE M, MATZGER A J, YAGHI O M. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310: 1166-1170  doi: 10.1126/science.1120411

    37. [37]

      FENG X, DING X S, JIANG D L. Covalent organic frameworks[J]. Chem. Soc. Rev., 2012, 41: 6010-6022  doi: 10.1039/c2cs35157a

    38. [38]

      JIN F Y, NGUYEN H, ZHONG Z Y, HAN X, ZHU C H, PEI X K, MA Y H, YAGHI O M. Entanglement of square nets in covalent organic frameworks[J]. J. Am. Chem. Soc., 2022, 144: 1539-1544  doi: 10.1021/jacs.1c13468

    39. [39]

      FENG J, ZHANG Y J, MA S H, YANG C, WANG Z P, DING S Y, LI Y, WANG W. Fused-ring-linked covalent organic frameworks[J]. J. Am. Chem. Soc., 2022, 144: 6594-6603  doi: 10.1021/jacs.2c02173

    40. [40]

      MASCHITA J, BANERJEE T, SAVASCI G, HAASE F, OCHSENFELD C, LOTSCH B V. Ionothermal synthesis of imide-linked covalent organic frameworks[J]. Angew. Chem.‒Int. Edit., 2020, 59: 15750-15758  doi: 10.1002/anie.202007372

    41. [41]

      ZHAO Y B, GUO L, GÁNDARA F, MA Y H, LIU Z, ZHU C H, LYU H, TRICKETT C A, KAPUSTIN E A, TERASAKI O, YAGHI O M. A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks[J]. J. Am. Chem. Soc., 2017, 139: 13166-13172  doi: 10.1021/jacs.7b07457

    42. [42]

      XIONG Z S, SUN B B, ZOU H B, WANG R W, FANG Q R, ZHANG Z T, QIU S L. Amorphous-to-crystalline transformation: General synthesis of hollow structured covalent organic frameworks with high crystallinity[J]. J. Am. Chem. Soc., 2022, 144: 6583-6593  doi: 10.1021/jacs.2c02089

    43. [43]

      ZHAO W, YAN P Y, YANG H F, BAHRI M, JAMES A M, CHEN H M, LIU L J, LI B Y, PANG Z F, CLOWES R, BROWNING N D, WARD J W, WU Y, COOPER A I. Using sound to synthesize covalent organic frameworks in water[J]. Nat. Synth., 2022, 1: 87-95  doi: 10.1038/s44160-021-00005-0

    44. [44]

      WANG L L, XU C W, ZHANG W Q, ZHANG Q L, ZHAO M L, ZENG C, JIANG Q L, GU C, MA Y G. Electrocleavage synthesis of solution-processed, imine-linked, and crystalline covalent organic framework thin films[J]. J. Am. Chem. Soc., 2022, 144: 8961-8968  doi: 10.1021/jacs.1c13072

    45. [45]

      ZHAO Y F, YAO K X, TENG B Y, ZHANG T, HAN Y. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture[J]. Energy Environ. Sci., 2013, 6: 3684-3692  doi: 10.1039/c3ee42548g

    46. [46]

      WANG Z F, ZHANG Y S, LIU J J, CHEN Y, CHENG P, ZHANG Z J. Flux synthesis of two-dimensional covalent organic frameworks[J]. Nat. Protoc., 2024, 19: 3489-3519  doi: 10.1038/s41596-024-01028-5

    47. [47]

      WU C, XIA L, XIA S J, VAN DER BRUGGEN B, ZHAO Y. Advanced covalent organic framework-based membranes for recovery of ionic resources[J]. Small, 2023, 19: 2206041  doi: 10.1002/smll.202206041

    48. [48]

      LI B Y, ZHANG Y M, KRISHNA R, YAO K X, HAN Y, WU Z L, MA D X, SHI Z, PHAM T, SPACE B, LIU J, THALLAPALLY P K, LIU J, CHRZANOWSKI M, MA S Q. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane[J]. J. Am. Chem. Soc., 2014, 136: 8654-8660  doi: 10.1021/ja502119z

    49. [49]

      HASELL T, MIKLITZ M, STEPHENSON A, LITTLE M A, CHONG S Y, CLOWES R, CHEN L J, HOLDEN D, TRIBELLO G A, JELFS K E, COOPER A I. Porous organic cages for sulfur hexafluoride separation[J]. J. Am. Chem. Soc., 2016, 138: 1653-1659  doi: 10.1021/jacs.5b11797

    50. [50]

      WANG Z F, ZHANG S N, CHEN Y, ZHANG Z J, MA S Q. Covalent organic frameworks for separation applications[J]. Chem. Soc. Rev., 2020, 49: 708-735  doi: 10.1039/C9CS00827F

    51. [51]

      YUAN S S, LI X, ZHU J Y, ZHANG G, VAN PUYVELDE P, VAN DER BRUGGEN B. Covalent organic frameworks for membrane separation[J]. Chem. Soc. Rev., 2019, 48: 2665-2681  doi: 10.1039/C8CS00919H

    52. [52]

      LI J, ZHOU X, WANG J, LI X F. Two-dimensional covalent organic frameworks (COFs) for membrane separation: A mini review[J]. Ind. Eng. Chem. Res., 2019, 58: 15394-15406  doi: 10.1021/acs.iecr.9b02708

    53. [53]

      SONG Q L, JIANG S, HASELL T, LIU M, SUN S J, CHEETHAM A K, SIVANIAH E, COOPER A I. Porous organic cage thin films and molecular-sieving membranes[J]. Adv. Mater., 2016, 28: 2629-2637  doi: 10.1002/adma.201505688

    54. [54]

      DING S Y, GAO J, WANG Q, ZHANG Y, SONG W G, SU C Y, WANG W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. J. Am. Chem. Soc., 2011, 133: 19816-19822  doi: 10.1021/ja206846p

    55. [55]

      FANG Q R, GU S, ZHENG J, ZHUANG Z B, QIU S L, YAN Y S. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis[J]. Angew. Chem.‒Int. Edit., 2014, 53, 2878-2882  doi: 10.1002/anie.201310500

    56. [56]

      XU H, GAO J, JIANG D L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts[J]. Nat. Chem., 2015, 7: 905-912  doi: 10.1038/nchem.2352

    57. [57]

      KAMIYA K, KAMAI R, HASHIMOTO K, NAKANISHI S. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts[J]. Nat. Commun., 2014, 5: 5040  doi: 10.1038/ncomms6040

    58. [58]

      SHARMA R K, YADAV P, YADAV M, GUPTA R, RANA P, SRIVASTAVA A, ZBORIL R, VARMA R S, ANTONIETTI M, GAWANDE M B. Recent development of covalent organic frameworks (COFs): Synthesis and catalytic (organic-electro-photo) applications[J]. Mater. Horizons, 2020, 7: 411-454  doi: 10.1039/C9MH00856J

    59. [59]

      ZHI Y F, WANG Z R, ZHANG H L, ZHANG Q C. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts[J]. Small, 2020, 16: 2001070  doi: 10.1002/smll.202001070

    60. [60]

      CAO S, LI B, ZHU R M, PANG H. Design and synthesis of covalent organic frameworks towards energy and environment fields[J]. Chem. Eng. J., 2019, 355: 602-623  doi: 10.1016/j.cej.2018.08.184

    61. [61]

      WANG J L, ZHUANG S T. Covalent organic frameworks (COFs) for environmental applications[J]. Coord. Chem. Rev., 2019, 400: 213046  doi: 10.1016/j.ccr.2019.213046

    62. [62]

      ZHENG W R, TSANG C S, LEE L Y S, WONG K Y. Two-dimensional metal-organic framework and covalent-organic framework: Synthesis and their energy-related applications[J]. Mater. Today Chem., 2019, 12: 34-60  doi: 10.1016/j.mtchem.2018.12.002

    63. [63]

      FERNANDES S P S, ROMERO V, ESPIÑA B, SALONEN L M. Tailoring covalent organic frameworks to capture water contaminants[J]. Chem.‒Eur. J., 2019, 25: 6461-6473  doi: 10.1002/chem.201806025

    64. [64]

      HE T, GENG K Y, JIANG D L. Engineering covalent organic frameworks for light-driven hydrogen production from water[J]. ACS Mater. Lett., 2019, 1: 203-208  doi: 10.1021/acsmaterialslett.9b00153

    65. [65]

      LIN J M, ZHONG Y R, TANG L Y, WANG L Q, YANG M, XIA H. Covalent organic frameworks: From materials design to electrochemical energy storage applications[J]. Nano Select, 2022, 3: 320-347  doi: 10.1002/nano.202100153

    66. [66]

      XU J Y, XU Y F, LAI C L, XIA T T, ZHANG B N, ZHOU X S. Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries[J]. Sci. China Chem., 2021, 64: 1267-1282

    67. [67]

      LI J, JING X C, LI Q Q, LI S W, GAO X, FENG X, WANG B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion[J]. Chem. Soc. Rev., 2020, 49: 3565-3604  doi: 10.1039/D0CS00017E

    68. [68]

      WANG Z Y, WANG C J, CHEN Y, WEI L. Covalent organic frameworks for capacitive energy storage: Recent progress and technological challenges[J]. Adv. Mater. Technol., 2023, 8: 2201828  doi: 10.1002/admt.202201828

    69. [69]

      TAO R, YANG T F, WANG Y, ZHANG J M, WU Z Y, QIU L. Design strategies of covalent organic framework-based electrodes for supercapacitor application[J]. Chem. Commun., 2023, 59: 3175-3192  doi: 10.1039/D2CC06573H

    70. [70]

      SCICLUNA M C, VELLA-ZARB L. Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework-drug systems[J]. ACS Appl. Nano Mater., 2020, 3: 3097-3115  doi: 10.1021/acsanm.9b02603

    71. [71]

      BHUNIA S, DEO K A, GAHARWAR A K. 2D covalent organic frameworks for biomedical applications[J]. Adv. Funct. Mater., 2020, 30: 2002046  doi: 10.1002/adfm.202002046

    72. [72]

      SINGH N, KIM J, KIM J, LEE K Y W, ZUNBUL Z, LEE I J, KIM E, CHI S G, KIM J S. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications[J]. Bioact. Mater., 2023, 21: 358-380

    73. [73]

      SHI Y Q, GAO F, ZHANG Q C, YANG J L. Covalent organic frameworks: Recent progress in biomedical applications[J]. ACS Nano, 2023, 17: 1879-1905  doi: 10.1021/acsnano.2c11346

    74. [74]

      ESRAFILI A, WAGNER A, INAMDAR S, ACHARYA A P. Covalent organic frameworks for biomedical applications[J]. Adv. Healthc. Mater., 2021, 10: 2002090  doi: 10.1002/adhm.202002090

    75. [75]

      LIAO C Y, LIU S J. Tuning the physicochemical properties of reticular covalent organic frameworks (COFs) for biomedical applications[J]. J. Mater. Chem. B, 2021, 9: 6116-6128  doi: 10.1039/D1TB01124C

    76. [76]

      YAO S C, LIU Z R, LI L L. Recent progress in nanoscale covalent organic frameworks for cancer diagnosis and therapy[J]. Nano-Micro Lett., 2021, 13: 176  doi: 10.1007/s40820-021-00696-2

    77. [77]

      GUAN Q, ZHOU L L, LI W Y, LI Y A, DONG Y B. Covalent organic frameworks (COFs) for cancer therapeutics[J]. Chem. Eur. J., 2020, 26: 5583-5591  doi: 10.1002/chem.201905150

    78. [78]

      FENG L L, QIAN C, ZHAO Y L. Recent advances in covalent organic framework-based nanosystems for bioimaging and therapeutic applications[J]. ACS Mater. Lett., 2020, 2: 1074-1092  doi: 10.1021/acsmaterialslett.0c00260

    79. [79]

      ZHAO Y, DAS S, SEKINE T, MABUCHI H, IRIE T, SAKAI J, WEN D, ZHU W D, BEN T, NEGISHI Y. Record ultralarge-pores, low density three-dimensional covalent organic framework for controlled drug delivery[J]. Angew. Chem.‒Int. Edit., 2023, 62: e202300172  doi: 10.1002/anie.202300172

    80. [80]

      LV J Q, TAN Y X, XIE J F, YANG R, YU M X, SUN S S, LI M D, YUAN D Q, WANG Y B. Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework[J]. Angew. Chem.‒Int. Edit., 2018, 57: 12716-12720  doi: 10.1002/anie.201806596

    81. [81]

      LI Z P, ZHANG Z W, NIE R M, LI C Z, SUN Q K, SHI W, CHU W C, LONG Y Y, LI H, LIU X M. Construction of stable donor-acceptor type covalent organic frameworks as functional platform for effective perovskite solar cell enhancement[J]. Adv. Funct. Mater., 2022, 32: 2112553  doi: 10.1002/adfm.202112553

    82. [82]

      STEGBAUER L, SCHWINGHAMMER K, LOTSCH B V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production[J]. Chem. Sci., 2014, 5: 2789-2793  doi: 10.1039/C4SC00016A

    83. [83]

      KRISHNARAJ C, JENA H S, BOURDA L, LAEMONT A, PACHFULE P, ROESER J, CHANDRAN C V, BORGMANS S, ROGGE S M J, LEUS K, STEVENS C V, MARTENS J A, VAN SPEYBROECK V, BREYNAERT E, THOMAS A, VAN DER VOORT P. Strongly reducing (diarylamino) benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation[J]. J. Am. Chem. Soc., 2020, 142: 20107-20116  doi: 10.1021/jacs.0c09684

    84. [84]

      CHEN W B, WANG L, MO D Z, HE F, WEN Z L, WU X J, XU H X, CHEN L. Modulating benzothiadiazole-based covalent organic frameworks via halogenation for enhanced photocatalytic water splitting[J]. Angew. Chem.‒Int. Edit., 2020, 59: 16902-16909  doi: 10.1002/anie.202006925

    85. [85]

      HAO L Q, JIA S P, QIAO X L, LIN E, YANG Y, CHEN Y, CHENG P, ZHANG Z J. Pore geometry and surface engineering of covalent organic frameworks for anhydrous proton conduction[J]. Angew. Chem.‒Int. Edit., 2022, 62: e202217240

    86. [86]

      LIU S J, LIN Z, WANG C C, GUO J. Dual-sided symmetric crystalline orientation of covalent organic framework membranes for unidirectional anhydrous proton conduction[J]. Sci. China Chem., 2022, 65: 2548-2557  doi: 10.1007/s11426-022-1379-y

    87. [87]

      JIANG G X, ZOU W W, OU Z Y, ZHANG L H, ZHANG W F, WANG X J, SONG H Y, CUI Z M, LIANG Z X, DU L. Tuning the interlayer interactions of 2D covalent organic frameworks enables an ultrastable platform for anhydrous proton transport[J]. Angew. Chem.‒Int. Edit., 2022, 61: e202208086  doi: 10.1002/anie.202208086

    88. [88]

      ZHANG J, KONG Y R, LIU Y Y, LUO H B, ZOU Y, ZANG S Q, REN X M. Superprotonic conduction of acidified benzimidazole-linked covalent organic framework[J]. ACS Mater. Lett., 2022, 4: 2597-2603  doi: 10.1021/acsmaterialslett.2c00432

    89. [89]

      HE C Y, TAO S S, LIU R Y, ZHI Y F, JIANG D L. Covalent organic frameworks: Linkage chemistry and its critical role in the evolution of π electronic structures and functions[J]. Angew. Chem.‒Int. Edit., 2024, 63: e202403472  doi: 10.1002/anie.202403472

    90. [90]

      MA H P, LIU B L, LI B, ZHANG L M, LI Y G, TAN H Q, ZANG H Y, ZHU G S. Cationic covalent organic frameworks: A simple platform of anionic exchange for porosity tuning and proton conduction[J]. J. Am. Chem. Soc., 2016, 138: 5897-5903  doi: 10.1021/jacs.5b13490

    91. [91]

      XU S, ZHANG Q. Recent progress in covalent organic frameworks as light-emitting materials[J]. Mater. Today Energy, 2021, 20: 100635  doi: 10.1016/j.mtener.2020.100635

    92. [92]

      VYAS V S, HAASE F, STEGBAUER L, SAVASCI G, PODJASKI F, OCHSENFELD C, LOTSCH B V. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation[J]. Nat. Commun., 2015, 6: 8508  doi: 10.1038/ncomms9508

    93. [93]

      DALAPATI S, JIN E Q, ADDICOAT M, HEINE T, JIANG D L. Highly emissive covalent organic frameworks[J]. J. Am. Chem. Soc., 2016, 138: 5797-5800  doi: 10.1021/jacs.6b02700

    94. [94]

      YUAN C, WANG Z, XIONG W Q, HUANG Z F, LAI Y L, FU S G, DONG J Q, DUAN A H, HOU X D, YUAN L M, CUI Y. Cyclodextrin incorporation into covalent organic frameworks enables extensive liquid and gas chromatographic enantioseparations[J]. J. Am. Chem. Soc., 2023, 145: 18956-18967  doi: 10.1021/jacs.3c05973

    95. [95]

      HOU B, LI Z P, KANG X, JIANG H, CUI Y. Recent advances of chiral covalent organic frameworks for enantiomer separation[J]. Chem. Res. Chin. Univ., 2022, 38: 350-355  doi: 10.1007/s40242-022-1490-6

    96. [96]

      ZHANG S Y, ZHOU J, LI H B. Chiral covalent organic framework packed nanochannel membrane for enantioseparation[J]. Angew. Chem.‒Int. Edit., 2022, 61: e202204012  doi: 10.1002/anie.202204012

    97. [97]

      MANORANJAN N, FANG W X, ZHU Y Z, JIN J. A chiral COFs membrane for enantioselective amino acid separation[J]. Angew. Chem.‒Int. Edit., 2025, 64: e202417088  doi: 10.1002/anie.202417088

    98. [98]

      ZHANG Z C, WANG P L, SUN Y F, YANG T, DING S Y, WANG W. Rational synthesis of functionalized covalent organic frameworks via four-component reaction[J]. J. Am. Chem. Soc., 2024, 146: 4822-4829  doi: 10.1021/jacs.3c13172

    99. [99]

      YANG J, HUANG L J, YOU J M, YAMAUCHI Y. Magnetic covalent organic framework composites for wastewater remediation[J]. Small, 2023, 19: 2301044  doi: 10.1002/smll.202301044

    100. [100]

      LIU X L, PANG H W, LIU X W, LI Q, ZHANG N, MAO L, QIU M Q, HU B W, YANG H, WANG X K. Orderly porous covalent organic frameworks-based materials: Superior adsorbents for pollutants removal from aqueous solutions[J]. Innovation, 2021, 2: 100076

    101. [101]

      LI Y, DONG Y, KAN J L, WU X W, DONG Y B. Synthesis and catalytic properties of metal-N-heterocyclic-carbene-decorated covalent organic framework[J]. Org. Lett., 2020, 22: 7363-7368  doi: 10.1021/acs.orglett.0c02721

    102. [102]

      LI Y, WANG J M, KAN J L, LI F, DONG Y, DONG Y B. Combination of a metal-N-heterocyclic-carbene catalyst and a chiral aminocatalyst within a covalent organic framework: A powerful cooperative approach for relay asymmetric catalysis[J]. Inorg. Chem., 2022, 61: 2455-2462  doi: 10.1021/acs.inorgchem.1c03268

    103. [103]

      LI J, WANG Z Y, MCCALLUM C, XU Y, LI F W, WANG Y H, GABARDO C M, DINH C T, ZHUANG T T, WANG L, HOWE J Y, REN Y, SARGENT E H, SINTON D. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction[J]. Nat. Catal., 2019, 2: 1124-1131  doi: 10.1038/s41929-019-0380-x

    104. [104]

      WEI P F, GAO D F, LIU T F, LI H F, SANG J Q, WANG C, CAI R, WANG G X, BAO X H. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis[J]. Nat. Nanotechnol., 2023, 18: 299-306  doi: 10.1038/s41565-022-01286-y

    105. [105]

      WANG L C, FU R Y, LI C, YANG X T, ZHANG C, OUYANG M J, WANG K B, ZHANG Q C. Metal-covalent organic frameworks: Design strategy, structure feature, and applications in energy storage[J]. Angew. Chem.‒Int. Edit., 2025, 64: e202513165  doi: 10.1002/anie.202513165

    106. [106]

      GUAN Q, ZHOU L L, DONG Y B. Metalated covalent organic frameworks: From synthetic strategies to diverse applications[J]. Chem. Soc. Rev., 2022, 51: 6307-6416  doi: 10.1039/D1CS00983D

    107. [107]

      WANG C L, LU Z H, YANG W X, FENG X, WANG B. A rational design of functional porous frameworks for electrocatalytic CO2 reduction reaction[J]. Chem. Soc. Rev., 2023, 52: 1382-1427  doi: 10.1039/D2CS00843B

    108. [108]

      CHEN Q, SI D H, WU Q J, CAO R, HUANG Y B. Engineering copper-based covalent organic framework microenvironments to enable efficient CO2 electroreduction with tunable ethylene/methane switch[J]. Adv. Funct. Mater., 2024, 34: 2315368  doi: 10.1002/adfm.202315368

    109. [109]

      QIU X F, HUANG J R, YU C, ZHAO Z H, ZHU H L, KE Z F, LIAO P Q, CHEN X M. A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate[J]. Angew. Chem.‒Int. Edit., 2022, 61: e202206470  doi: 10.1002/anie.202206470

    110. [110]

      ZHAO Q L, WANG Y A, LI M, ZHU S Q, LI T H, YANG J X, LIN T, DELMO E P, WANG Y N, JANG J H, GU M, SHAO M H. Organic frameworks confined Cu single atoms and nanoclusters for tandem electrocatalytic CO2 reduction to methane[J]. SmartMat, 2022, 3: 183-193  doi: 10.1002/smm2.1098

    111. [111]

      ZHANG M, LU M, YANG M Y, LIAO J P, LIU Y F, YAN H J, CHANG J N, YU T Y, LI S L, LAN Y Q. Ultrafine Cu nanoclusters confined within covalent organic frameworks for efficient electroreduction of CO2 to CH4 by synergistic strategy[J]. eScience, 2023, 3: 100116  doi: 10.1016/j.esci.2023.100116

    112. [112]

      ZHU Z J J, ZHU Y H, REN Z X, LIU D, YUE F Y, SHENG D F, SHAO P P, HUANG X Y, FENG X, YIN A X, XIE J, WANG B. Covalent organic framework ionomer steering the CO2 electroreduction pathway on Cu at industrial-grade current density[J]. J. Am. Chem. Soc., 2024, 146: 1572-1579  doi: 10.1021/jacs.3c11709

    113. [113]

      LIU M, WANG Y R, DING H M, LU M, GAO G K, DONG L Z, LI Q, CHEN Y F, LI S L, LAN Y Q. Self-assembly of anthraquinone covalent organic frameworks as 1D superstructures for highly efficient CO2 electroreduction to CH4[J]. Sci. Bull., 2021, 66: 1659-1668  doi: 10.1016/j.scib.2021.05.001

    114. [114]

      WANG Y R, DING H M, MA X Y, LIU M, YANG Y L, CHEN Y F, LI S L, LAN Y Q. Imparting CO2 electroreduction auxiliary for integrated morphology tuning and performance boosting in a porphyrin-based covalent organic framework[J]. Angew. Chem.‒Int. Edit., 2022, 61: e202114648  doi: 10.1002/anie.202114648

    115. [115]

      ZHANG Y Z, CAO L L, BAI G Y, LAN X W. Engineering single Cu sites into covalent organic framework for selective photocatalytic CO2 reduction[J]. Small, 2023, 19: 2300035  doi: 10.1002/smll.202300035

    116. [116]

      LIU Z Y, YIN H C, SUN J H, BAI L L, LI Z, ZHAO X M, YAN X D, ZHAO M, JING L Q. Engineering single Cu atoms anchored via N-heterocyclic carbene in COF mesopores for modulating electron kinetics of CO2 photoconversion[J]. Adv. Energy Mater., 2024, 14: 2401713  doi: 10.1002/aenm.202401713

    117. [117]

      ZHANG Z H, LU J, YANG K, CAO J Y, ZHAO Y, GE K, WANG S, YANG Y, ZHANG Y, YANG Y F. DhaTph tubes and DhaTph-Cu tubes with hollow tubular structure and their photocatalytic reduction of CO2[J]. ChemistrySelect, 2022, 7: e202201203  doi: 10.1002/slct.202201203

    118. [118]

      TU W G, YANG Y Q, CHEN C P, ZHOU T H, LI T H, WANG H J, WU S Y, ZHOU Y, O′HARE D, ZOU Z G, XU R. Cu-O/N single sites incorporated 2D covalent organic framework ultrathin nanobelts for highly selective visible-light-driven CO2 reduction to CO[J]. Small Struct., 2023, 4: 2200233  doi: 10.1002/sstr.202200233

    119. [119]

      WANG J M, LEE J H, WOO T G, ZHANG Y X, JANG W D, KIM T K. Regulating Cu atom orbital state on self-built photogate catalyst for improving HCOOH selectivity of CO2 reduction[J]. Appl. Catal. B‒Environ., 2023, 324: 122287  doi: 10.1016/j.apcatb.2022.122287

  • 加载中
    1. [1]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    2. [2]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    3. [3]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    4. [4]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    5. [5]

      Yanping Qiu Lei Ge . Low-coordination Cu3 motif for selective photocatalytic conversion of CO2 to ethanol. Chinese Journal of Structural Chemistry, 2025, 44(11): 100716-100716. doi: 10.1016/j.cjsc.2025.100716

    6. [6]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    7. [7]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    8. [8]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    9. [9]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    10. [10]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    11. [11]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    12. [12]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    13. [13]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    14. [14]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    15. [15]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    16. [16]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    17. [17]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    18. [18]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    19. [19]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    20. [20]

      Hui LiChunlang GaoGuo YangLu XiaWulyu JiangCheng WuKaiwen WangYingtang ZhouXiaodong Han . Enhanced photocatalytic CO2 reduction of Bi2WO6-BiOCl heterostructure with coherent interface for charge utilization. Chinese Chemical Letters, 2025, 36(9): 110547-. doi: 10.1016/j.cclet.2024.110547

Metrics
  • PDF Downloads(1)
  • Abstract views(44)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return