Citation: Shengwen XU, Longlong YANG, Houji CAO, Deshuang TU, Xing WEI, Changsheng LU, Hong YAN. Research progress on light-induced functionalization of polyhedral carborane clusters[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192 shu

Research progress on light-induced functionalization of polyhedral carborane clusters

  • Corresponding author: Deshuang TU,  Xing WEI,  Changsheng LU,  Hong YAN, hyan1965@nju.edu.cn
  • Received Date: 8 June 2025
    Revised Date: 25 September 2025

Figures(18)

  • Carboranes, as unique polyhedral boron cluster compounds, exhibit broad application prospects in numerous fields due to their three-dimensional aromatic structures and multicenter, multielectron bonding. However, the B—H bonds in carboranes are inert and pose challenges in regioselectivity, thus making their functionalization a great challenge in synthesis. In recent years, researchers have achieved carborane functionalization by employing light-induced strategies. These studies not only open new avenues for carborane functionalization but also yield a series of functionalized molecules containing carboranyl units, thereby laying a solid foundation for the further advancement of carborane chemistry.
  • 加载中
    1. [1]

      GRIMES R N. Carboranes[M]. Academic Press: Amsterdam, 2016.

    2. [2]

      WIESBOECK R A, HAWTHORNE M F. Dicarbaundecaborane (13) and derivatives[J]. J. Am. Chem. Soc., 1964,86:1642-1643. doi: 10.1021/ja01062a042

    3. [3]

      SOLÀ M. Aromaticity rules[J]. Nat. Chem., 2022,14:585-590. doi: 10.1038/s41557-022-00961-w

    4. [4]

      POATER J, VIÑAS C, BENNOUR I, ESCAYOLA S, SOLÀ M, TEIXIDOR F. Too persistent to give up: Aromaticity in boron clusters survives radical structural changes[J]. J. Am. Chem. Soc., 2020,142:9396-9407. doi: 10.1021/jacs.0c02228

    5. [5]

      HOSMANE N S, EAGLING R D. Handbook of boron science: With applications in organometallics, catalysis, materials and medicine[M]. World Scientific: London, 2018.

    6. [6]

      MARFAVI A, KAVIANPOUR P, RENDINA L M. Carboranes in drug discovery, chemical biology and molecular imaging[J]. Nat. Rev. Chem., 2022,6:486-504. doi: 10.1038/s41570-022-00400-x

    7. [7]

      CUI P F, LIU X R, GUO S T, LIN Y J, JIN G X. Steric-effects-directed B—H bond activation of para-carboranes[J]. J. Am. Chem. Soc., 2021,143:5099-5105. doi: 10.1021/jacs.1c00779

    8. [8]

      HUANG J H, CUI H, WANG Z Y, ZANG S Q. Carborane meets metal nanocluster: New opportunities in nanomaterials[J]. Acc. Chem. Res., 2025,58:1249-1261. doi: 10.1021/acs.accounts.5c00033

    9. [9]

      ROSHANZADEH A, MEDEIROS H C D, HERRERA C K, MALHADO C, TOMICH A W, FISHER S P, LOVERA S O, BATES M, LAVALLO V, LUNT R R, LUNT S Y. Next-generation photosensitizers: Cyanine-carborane salts for superior photodynamic therapy of metastatic cancer[J]. Angew. Chem.‒Int. Edit., 2025,64e202419759. doi: 10.1002/anie.202419759

    10. [10]

      ADILLON E H, PETERS J C. A carborane-derived proton-coupled electron transfer reagent[J]. J. Am. Chem. Soc., 2024,146:30204-30211. doi: 10.1021/jacs.4c09007

    11. [11]

      YU X, CUI D Y, WANG M M, WANG Z J, WANG M Z, TU D S, BREGADZE V I, LU C S, ZHAO Q, CHEN R F, YAN H. Boron cluster‑based TADF emitter via through‑space charge transfer enabling efficient orange‑red electroluminescence[J]. Chin. Chem. Lett., 2025,36110520. doi: 10.1016/j.cclet.2024.110520

    12. [12]

      WANG M Y, ZHANG S Y, GONG Y, ZHANG W Y, WANG Y, CHEN Y P, ZHENG Q, LIU Z P, TANG C. Highly stable carboranyl ligated gold nano-catalysts for regioselective aromatic bromination[J]. Angew. Chem.‒Int. Edit., 2024,63e202409283. doi: 10.1002/anie.202409283

    13. [13]

      GUO W J, YANG Z, SHU L L, CAI H, WEI Z H. The first discovery of spherical carborane molecular ferroelectric crystals[J]. Angew. Chem.‒Int. Edit., 2024,63e202407934. doi: 10.1002/anie.202407934

    14. [14]

      WU L, HOLZAPFEL M, SCHMIEDEL A, PENG F W, MOOS M, MENTZEL P, SHI J Q, NEUBERT T, BERTERMANN R, FINZE M, FOX M A, LAMBERT C, JI L. Optically induced charge-transfer in donor-acceptor-substituted p- and m-C2B10H12 carboranes[J]. Nat. Commun., 2024,153005. doi: 10.1038/s41467-024-47384-4

    15. [15]

      PU T L, WANG X Y, SUN Z B, DONG X Y, WANG Q Y, ZANG S Q. Introducing carborane clusters into crystalline frameworks via thiol-yne click chemistry for energetic materials[J]. Angew. Chem.‒Int. Edit., 2024,63e2024023.

    16. [16]

      BAUBLIS A J, SPOKOYNY A M. Boron cluster organocatalysis[J]. Chem, 2024,10:19-34. doi: 10.1016/j.chempr.2023.12.011

    17. [17]

      KONA H N, OKU R, NAKAMURA S, MIURA M, HIRANO K, NISHII Y. Aromatic halogenation using carborane catalyst[J]. Chem, 2024,10:402-413. doi: 10.1016/j.chempr.2023.10.006

    18. [18]

      ZHU M, ZHOU Q, CHENG H, SHA Y, BREGADZE V I, YAN H, SUN Z, LI X. Boron-cluster embedded necklace-shaped nanohoops[J]. Angew. Chem.‒Int. Edit., 2023,62e202213470. doi: 10.1002/anie.202213470

    19. [19]

      MA W L, WANG Y Y, XUE Y L, WANG M M, LU C S, GUO W H, LIU Y H, SHU D Y, SHAO G Q, XU Q F, TU D S, YAN H. Molecular engineering of AIE-active boron clustoluminogens for enhanced boron neutron capture therapy[J]. Chem. Sci., 2024,15:4019-4030. doi: 10.1039/D3SC06222H

    20. [20]

      MA W L, ZHANG J Y, ZONG J B, REN H Y, TU D S, XU Q F, TANG B Z, YAN H. Luminescence modulation in boron-cluster-based luminogens via boron isotope effects[J]. Angew. Chem.‒Int. Edit., 2024,63e202410430. doi: 10.1002/anie.202410430

    21. [21]

      SHI Y X, GUO Z B, FU Q, SHEN X Y, ZHANG Z M, SUN W J, WANG J Q, SUN J L, ZHANG Z Z, LIU T, GU Z, LIU Z B. Localized nuclear reaction breaks boron drug capsules loaded with immune adjuvants for cancer immunotherapy[J]. Nat. Commun., 2023,141884. doi: 10.1038/s41467-023-37253-x

    22. [22]

      LI R X, ZHANG J J, GUO J X, XU Y, DUAN K Y, ZHENG J R, WAN H, YUAN Z W, CHEN H Y. Application of nitroimidazole-carbobane-modified phenylalanine derivatives as dual-target boron carriers in boron neutron capture therapy[J]. Mol. Pharmaceut., 2020,17:202-211. doi: 10.1021/acs.molpharmaceut.9b00898

    23. [23]

      HOPPENZ P, ELS‑HEINDL S, KELLERT M, KUHNERT R, SARETZ S, LERCHEN H, KOEBBERLING J, RIEDL B, HEY-HAWKINS E, BECK-SICKINGER A G. A selective carborane-functionalized gastrin-releasing peptide receptor agonist as boron delivery agent for boron neutron capture therapy[J]. J. Org. Chem., 2020,85:1446-1457. doi: 10.1021/acs.joc.9b02406

    24. [24]

      MATOVIC J, JARVINEN J, BLAND H, SOKKA I, IMLIMTHAN S, FERRANDO R, HUTTUNEN K, TIMONEN J, PERANIEMI S, AITIO O, AIRAKSINEN A, SARPARANTA M, JOHANSSON M, RAUTIO J, EKHOLM F. Addressing the biochemical foundations of a glucose-based "trojan horse"-strategy to boron neutron capture therapy: From chemical synthesis to in vitro assessment[J]. Mol. Pharmaceuts, 2020,17:3885-3899. doi: 10.1021/acs.molpharmaceut.0c00630

    25. [25]

      KAWASAKI R, HIRANO H, YAMANA K, ISOZAKI H, KAWAMURA S, SANADA Y, BANDO K, TABATA A, YOSHIKAWA K, AZUMA H, TAKATA T, TANAKA H, SAKURAI Y, SUZUKI M, TARUTANI N, KATAGIRI K, SAWADA S, SASAKI Y, AKIYOSHI K, NAGASAKI T, IKEDA A. Carborane bearing pullulan nanogel-boron oxide nanoparticle hybrid for boron neutron capture therapy[J]. Nanomed. Nanotech. Bio. Med., 2023,49102659. doi: 10.1016/j.nano.2023.102659

    26. [26]

      NAKASE I, KATAYAMA M, HATTORI Y, ISHIMURA M, INAURA S, FUJIWARA D, TAKATANI-NAKASE T, FUJII I, FUTAKI S, KIRIHATA M. Intracellular target delivery of cell‑penetrating peptide-conjugated dodecaborate for boron neutron capture therapy (BNCT)[J]. Chem. Commun., 2019,55:13955-13958. doi: 10.1039/C9CC03924D

    27. [27]

      OLIVA J M, SCHLEYER P V R, AULLON G, BURGOS J I, FERNANDEZ-BARBERO A, ALKORTA I. On the electronic structure and stability of icosahedral r-X2Z10H12 and Z12H122- clusters; r={ortho, meta, para}, X={C, Si}, Z={B, Al}[J]. Phys. Chem. Chem. Phys., 2010,12:5101-5108. doi: 10.1039/b924322d

    28. [28]

      BARBERÀ G, VACA A, TEIXIDOR F. SILLANPÄÄ R, KIVEKÄS R, VIÑAS C. Designed synthesis of new ortho-carborane derivatives: From mono- to polysubstituted frameworks[J]. Inorg. Chem., 2008,47:7309-7316. doi: 10.1021/ic800362z

    29. [29]

      ANDREWS J S, ZAYAS J, JONES M. 9-Iodo-o-carborane[J]. Inorg. Chem., 1985,24:3715-3716. doi: 10.1021/ic00216a053

    30. [30]

      TANG C, ZHANG J J, XIE Z W. Direct nucleophilic substitution reaction of cage B—H bonds by grignard reagents: A route to regioselective B4-alkylation of o-carboranes[J]. Angew. Chem.‒Int. Edit., 2017,56:8642-8646. doi: 10.1002/anie.201702347

    31. [31]

      TANG C, ZHANG J J, ZHANG J, XIE Z W. Regioselective nucleophilic alkylation/arylation of B—H bonds in o-carboranes: An alternative method for selective cage boron functionalization[J]. J. Am. Chem. Soc., 2018,140:16423-16427. doi: 10.1021/jacs.8b10270

    32. [32]

      QIU Z Z, XIE Z W. A strategy for selective catalytic B—H functionalization of o-carboranes[J]. Acc. Chem. Res., 2021,54:4065-4079. doi: 10.1021/acs.accounts.1c00460

    33. [33]

      QIU Z Z, QUAN Y J, XIE Z W. Palladium-catalyzed selective fluorination of o-carboranes[J]. J. Am. Chem. Soc., 2013,135:12192-12195. doi: 10.1021/ja405808t

    34. [34]

      QUAN Y J, XIE Z W. Iridium catalyzed regioselective cage boron alkenylation of o-carboranes via direct cage B—H activation[J]. J. Am. Chem. Soc., 2014,136:15513-15516. doi: 10.1021/ja509557j

    35. [35]

      LYU H R, QUAN Y J, XIE Z W. Transition metal catalyzed direct amination of the cage B(4)—H bond in o-carboranes: Synthesis of tertiary, secondary, and primary o-carboranyl amines[J]. J. Am. Chem. Soc., 2016,138:12727-12730. doi: 10.1021/jacs.6b07086

    36. [36]

      CAO K, HUANG Y W, YANG J X, WU J. Palladium catalyzed selective mono-arylation of o-carboranes via B—H activation[J]. Chem. Commun., 2015,51:7257-7260. doi: 10.1039/C5CC01331C

    37. [37]

      CAO K, XU T T, WU J, JIANG L H, YANG J X. Palladium catalyzed/silver tuned selective mono-/tetra-acetoxylation of o-carboranes via B—H activation[J]. Chem. Commun., 2016,52:11446-11449. doi: 10.1039/C6CC06200H

    38. [38]

      MA Y N, GAO Y, MA Y B, WANG Y, REN H Z, CHEN X N. Palladium-catalyzed regioselective B(9)-amination of o-carboranes and m-carboranes in HFIP with broad nitrogen sources[J]. J. Am. Chem. Soc., 2022,144:8371-8378. doi: 10.1021/jacs.2c03031

    39. [39]

      WANG Y, LI Y G, WANG M M, LI L X, CHEN X N, MA Y N. Polyoxometalate-supported Pd􀃭-catalyzed B(9)—H nitration of o/m-carboranes[J]. ACS. Catal., 2025,15:7646-7652. doi: 10.1021/acscatal.5c01516

    40. [40]

      CHANG J R, CAO H J, MA Y N, CHEN X N. Palladium-catalyzed cross-coupling reactions of carboranes with alkenes via selective B—H Bond activation[J]. Org. Lett., 2025,27:1858-1863. doi: 10.1021/acs.orglett.5c00059

    41. [41]

      WANG Y, LI Y G, CHEN F J, MA Y N, CHEN X N. HSAB theory guiding electrophilic substitution reactions of o-carborane[J]. Org. Chem. Front., 2025,12:76-84. doi: 10.1039/D4QO01546K

    42. [42]

      CHEN F J, GUO W J, MA Y N, CHEN X N. 9, 9′-Bis-o-carboranes: Synthesis and exploration of properties[J]. Chem. Commun., 2024,60:614-617. doi: 10.1039/D3CC05041F

    43. [43]

      YE H D, XU B H, HU J R, YAN H. Cobalt􀃮-mediated intramolecular coupling of B(3)/B(6) in CpCoS2C2B10H10 with Cp ligand[J]. Chinese J. Inorg. Chem., 2015,31:1447-1452.

    44. [44]

      ZHANG X L, YAN H. Transition metal-induced B—H functionalization of o-carborane[J]. Coord. Chem. Rev., 2019,378:466-482. doi: 10.1016/j.ccr.2017.11.006

    45. [45]

      ZHANG X L, ZHENG H M, LI J, XU F, ZHAO J, YAN H. Selective catalytic B—H arylation of o-carboranyl aldehydes by a transient directing strategy[J]. J. Am. Chem. Soc., 2017,139:14511-14517. doi: 10.1021/jacs.7b07160

    46. [46]

      CAO H J, CHEN M, SUN F X, ZHAO Y, LU C S, ZHANG X L, SHI Z Z, YAN H. Variable metal chelation modes and activation sequence in Pd catalyzed B—H poly‑arylation of carboranes[J]. ACS. Catal., 2021,11:14047-14057. doi: 10.1021/acscatal.1c04473

    47. [47]

      LI C X, ZHANG H Y, WONG T Y, CAO H J, YAN H, LU C S. Pyridyl-directed Cp*Rh􀃮-catalyzed B(3)—H acyloxylation of o-carborane[J]. Org. Lett., 2017,19:5178-5181. doi: 10.1021/acs.orglett.7b02450

    48. [48]

      YE H D, JIANG Q B, XIE M S, DING G Y, LI Y Z, YAN H. Selective stepwise substitutions in the B(3, 6) positions of the 16e half-sandwich complex CpCoS2C2B10H10[J]. Chinese J. Inorg. Chem., 2011,27:1601-1606.

    49. [49]

      CAO H J, WEI X, SUN F X, ZHANG X L, LU C S, YAN H. Metal-catalyzed B—H acylmethylation of pyridylcarboranes: Access to carborane-fused indoliziniums and quinoliziniums[J]. Chem. Sci., 2021,12:15563-15571. doi: 10.1039/D1SC05296A

    50. [50]

      LI C X, NING Q, ZHAO W, CAO H J, WANG Y P, YAN H, LU C S, LIANG Y. Rh-catalyzed decarbonylative cross-coupling between o-carboranes and twisted amides: A regioselective, additive-free, and concise late-stage carboranylation[J]. Chem. Eur. J., 2021,27:2699-2706. doi: 10.1002/chem.202003634

    51. [51]

      SUN F X, TAN S M, CAO H J, XU J K, BREGADZE V I, TU D S, LU C S, YAN H. Palladium-catalyzed hydroboration of alkynes with carboranes: Facile construction of a library of boron cluster-based AIE-active luminogens[J]. Angew. Chem.‒Int. Edit., 2022,61e202207125. doi: 10.1002/anie.202207125

    52. [52]

      SUN F X, TAN S M, CAO H J, LU C S, TU D S, POATER J, SOLÀ M, YAN H. Facile construction of new hybrid conjugation via boron cage extension[J]. J. Am. Chem. Soc., 2023,145:3577-3587. doi: 10.1021/jacs.2c12526

    53. [53]

      SUN Z F, ZONG J B, REN H Y, LU C S, TU D S, POATER J, SOLÀ M, SHI Z Z, YAN H. Couple-close construction of non-classical boron cluster-phosphonium conjugates[J]. Nat. Commun., 2024,157934. doi: 10.1038/s41467-024-51506-3

    54. [54]

      BAEK Y, CHEONG K, KO G H, HAN G U, HAN S H, KIM D, LEE K, LEE P H. Iridium-catalyzed cyclative indenylation and dienylation through sequential B(4)—C bond formation, cyclization, and elimination from o-carboranes and propargyl alcohols[J]. J. Am. Chem. Soc., 2020,142:9890-9895. doi: 10.1021/jacs.0c02121

    55. [55]

      LI H H, YAN H, LU C S. Progress in selective B—H bond functionalization of carborane[J]. Chinese J. Inorg. Chem., 2017,33:1313-1329.

    56. [56]

      LIANG Y F, YANG L, JEI B B, KUNIYIL R, ACKERMANN L. Regioselective B(3, 4)—H arylation of o-carboranes by weak amide coordination at room temperature[J]. Chem. Sci., 2020,11:10764-10769. doi: 10.1039/D0SC01515F

    57. [57]

      SUN M F, FENG L J, LU J Y. Breaking the base barrier: Cu􀃭-mediated C—H heteroarylation of o-carboranes with base-sensitive heteroaryl halides[J]. Org. Lett., 2024,26:3697-3702. doi: 10.1021/acs.orglett.4c00489

    58. [58]

      LEE K, GONZÁLEZ-MONTIEL G A, EOM H, KIM T H, NOH H C, FARAH A O, WISE H. R, KIM D, CHEONG P H, LEE P H. Site- and enantioselective B—H functionalization of carboranes[J]. Nat. Commun., 2025,164182. doi: 10.1038/s41467-025-59410-0

    59. [59]

      CAO H J, LIU J X, YAN J H, LIU M X, ZHAO Q Y, ZHANG J, ZHANG J, YAN H. Post-coordination of Ru􀃭 controlled regioselective B(4)—H acylmethylation of o‑carboranes with sulfoxonium ylides[J]. Chem. Sci., 2025,16:9406-9412. doi: 10.1039/D5SC01576F

    60. [60]

      CHAN A Y, PERRY I B, BISSONNETTE N B, BUKSH B F, EDWARDS G A, FRYE L I, GARRY O L, LAVAGNINO M N, LI B X, LIANG Y, MAO E, MILLET A, OAKLEY J V, REED N L, SAKAI H A, SEATH C P, MACMILLAN D W C. Metallaphotoredox: The merger of photoredox and transition metal catalysis[J]. Chem. Rev., 2022,122:1485-1542. doi: 10.1021/acs.chemrev.1c00383

    61. [61]

      LEI T, CHENG Y Y, HAN X, ZHOU C, YANG B, FAN X W, CHEN B, TUNG C H, WU L Z. Lewis acid-relayed singlet oxygen reaction with enamines: Selective dimerization of enamines to pyrrolin-4-ones[J]. J. Am. Chem. Soc., 2022,144:16667-16675. doi: 10.1021/jacs.2c07450

    62. [62]

      LU F D, CHEN J, JIANG X, CHEN J R, LU L Q, XIAO W J. Recent advances in transition-metal-catalysed asymmetric coupling reactions with light intervention[J]. Chem. Soc. Rev., 2021,50:12808-12827. doi: 10.1039/D1CS00210D

    63. [63]

      WEN L, DING J, DUAN L F, WANG S, AN Q, WANG H X, ZUO Z W. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols[J]. Science, 2023,382:458-464. doi: 10.1126/science.adj0040

    64. [64]

      ZHENG G X, JONES M. Reaction of carbethoxycarbene with o‑ carborane[J]. J. Am. Chem. Soc., 1983,105:6487-6488. doi: 10.1021/ja00359a020

    65. [65]

      ZHAO D, XIE Z W. Visible-light-promoted photocatalytic B—C coupling via a boron-centered carboranyl radical: Facile synthesis of B(3)-arylated o-carboranes[J]. Angew. Chem.‒Int. Edit., 2016,55:3166-3170. doi: 10.1002/anie.201511251

    66. [66]

      LI S M, XIE Z W. Visible-light-promoted nickel-catalyzed cross-coupling of iodocarboranes with (hetero)arenes via boron-centered carboranyl radicals[J]. J. Am. Chem. Soc., 2022,144:7960-7965. doi: 10.1021/jacs.2c02329

    67. [67]

      LI S M, ZHANG J, XIE Z W. Visible-light-induced palladium-catalyzed cross-coupling of iodocarboranes with (hetero)arenes[J]. Org. Lett., 2022,24:7497-7501. doi: 10.1021/acs.orglett.2c02648

    68. [68]

      LI S M, LIU Y Z, XIE Z W. Visible-light-promoted palladium-catalyzed cross-coupling of iodocarboranes with disulfides and phenylselenyl chloride[J]. Chin. J. Chem., 2023,42:129-134.

    69. [69]

      CHEN M, XU J K, ZHAO D S, SUN F X, TIAN S M, TU D S, LU C S, YAN H. Site-selective functionalization of carboranes at the electron-rich boron vertex: Photocatalytic B—C coupling via a carboranyl cage radical[J]. Angew. Chem.‒Int. Edit., 2022,61e202205672. doi: 10.1002/anie.202205672

    70. [70]

      REN H Y, ZHANG P, XU J K, MA W L, TU D S, LU C S, YAN H. Direct B—H functionalization of icosahedral carboranes via hydrogen atom transfer[J]. J. Am. Chem. Soc., 2023,145:7638-7647. doi: 10.1021/jacs.3c01314

    71. [71]

      NI H C, LU Z P, XIE Z W. Light-promoted copper-catalyzed cage C-arylation of o-carboranes: Facile synthesis of 1-aryl-o-carboranes and o-carborane-fused cyclics[J]. New J. Chem., 2021,45:14944-14948. doi: 10.1039/D0NJ02029J

    72. [72]

      NI H C, LU Z P, XIE Z W. Light-enabled alkenylation of iodocarboranes with unactivated alkenes[J]. Dalton Trans., 2021,51:104-110.

    73. [73]

      LI L X, CHEN Z, YANG Z T. Photocatalyzed oxycarboranylation of alkenes with 1‑iodo‑o‑carboranes through a halogen-atom transfer strategy[J]. Org. Lett., 2025,27:6732-6736. doi: 10.1021/acs.orglett.5c01838

    74. [74]

      XU S W, ZHANG H J, XU J K, SUO W Q, LU C S, TU D S, GUO X W, POATER J, SOLÀ M, YAN H. Photoinduced selective B—H activation of nido-carboranes[J]. J. Am. Chem. Soc., 2024,146:7791-7802. doi: 10.1021/jacs.4c00550

    75. [75]

      XU S W, ZHANG H J, ZONG J B, CAO H J, TU D S, LU C S, YAN H. Taming inert B—H bond with low energy light: A near-infrared light-induced approach to facile carborane cluster-amino acid coupling[J]. J. Am. Chem. Soc., 2025,147:12845-12857. doi: 10.1021/jacs.5c01610

  • 加载中
    1. [1]

      Ruoxi RUNJikai ZHULixia HANZhiyin XIAOXiujuan JIANGJing JIN . Red light-induced CO-release from manganese carbonyl complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2575-2583. doi: 10.11862/CJIC.20250132

    2. [2]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    3. [3]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    4. [4]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    5. [5]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    8. [8]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    9. [9]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    10. [10]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    11. [11]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    12. [12]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    13. [13]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    14. [14]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    15. [15]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    16. [16]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    17. [17]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    18. [18]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    19. [19]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    20. [20]

      Linfeng Zhou Yulin Zhang Suhao Lin Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030

Metrics
  • PDF Downloads(4)
  • Abstract views(344)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return