Citation: Bangdi GE, Xiaowei SONG, Zhiqiang LIANG. A bifunctional three-dimensional Eu-MOF fluorescent probe for highly sensitive detection of 2, 4, 6-trinitrophenol and tetracycline[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2165-2174. doi: 10.11862/CJIC.20250190 shu

A bifunctional three-dimensional Eu-MOF fluorescent probe for highly sensitive detection of 2, 4, 6-trinitrophenol and tetracycline

Figures(6)

  • Herein, a luminescent europium-based metal-organic framework (Eu-MOF, [Eu3(L)(HL)(NO3)2(DMF)2]·4DMF·5H2O, H4L=5,5′-(pyrazine-2,6-diyl)diisophthalic acid, DMF=N,N-dimethylformamide) was developed for the dual-functional detection of environmental pollutants. This fluorescence-quenching-based sensor exhibited exceptional sensitivity for both 2,4,6-trinitrophenol (TNP) and tetracycline (TC), achieving remarkably low detection limits of 1.96×10-6 and 1.71×10-7 mol·L-1, respectively. Notably, the system exhibited 99% fluorescence quenching efficiency for TC, indicating ultra-efficient analyte recognition. The detection performance surpasses most reported luminescent MOF sensors, attributed to synergistic mechanisms of fluorescence resonance energy transfer (FRET) and photoinduced electron transfer (PET).
  • 加载中
    1. [1]

      SUZUKI T, HIDAKA T, KUMAGAI Y, YAMAMOTO M. Environmental pollutants and the immune response[J]. Nat. Immunol., 2020, 21(12): 1486-1495  doi: 10.1038/s41590-020-0802-6

    2. [2]

      LI Y, CHEN B Q, YANG S F, JIAO Z, ZHANG M C, YANG Y M, GAO Y H. Advances in environmental pollutant detection techniques: Enhancing public health monitoring and risk assessment[J]. Environ. Int., 2025, 197: 109365  doi: 10.1016/j.envint.2025.109365

    3. [3]

      DENG W H, YAO M S, ZHANG M Y, TSUJIMOTO M, OTAKE K, WANG B, LI C S, XU G, KITAGAWA S. Non-contact real-time detection of trace nitro-explosives by MOF composites visible-light chemiresistor[J]. Natl. Sci. Rev., 2022, 9(10): nwac143  doi: 10.1093/nsr/nwac143

    4. [4]

      LI M, MA J Y, WANG J L, WEI X F, LU W W. Conjugated microporous polymer-based fluorescent probe for selective detection of nitro-explosives and metal nitrates[J]. ACS Appl. Mater. Interfaces, 2025, 17(2): 4033-4043  doi: 10.1021/acsami.4c19789

    5. [5]

      ZHONG Z Q, YANG S W, CHEN F, DU Z H, LIU N, ZHANG H. Molecular engineering strategies of cationic oligo(p-phenyleneethynylene)s for enhancing sensitive discrimination of multiple hazardous explosives[J]. Chem. Eng. J., 2025, 510: 161558  doi: 10.1016/j.cej.2025.161558

    6. [6]

      MIAO S, ZHANG Y Y, LI B C, YUAN X, MEN C, ZUO J E. Antibiotic intermediates and antibiotics synergistically promote the development of multiple antibiotic resistance in antibiotic production wastewater[J]. J. Hazard. Mater., 2024, 479: 135601  doi: 10.1016/j.jhazmat.2024.135601

    7. [7]

      ZHANG R, YANG S, AN Y W, WANG Y Q, LEI Y, SONG L Y. Antibiotics and antibiotic resistance genes in landfills: A review[J]. Sci. Total Environ., 2022, 806: 150647  doi: 10.1016/j.scitotenv.2021.150647

    8. [8]

      MACLEAN R C, SAN MILLAN A. The evolution of antibiotic resistance[J]. Science, 2019, 365(6458): 1082-1083  doi: 10.1126/science.aax3879

    9. [9]

      MURUGAN K, NATARAJAN A, SRIDEVI V M. Molecularly imprinted optical probe based on in-situ CoFe2O4/CNDs for monitoring 2, 4, 6-para trinitrophenol in aqueous medium with integrated smartphone detection[J]. J. Water Process. Eng., 2025, 74: 107879  doi: 10.1016/j.jwpe.2025.107879

    10. [10]

      WANG H Y, WANG L J, LI D, FAN K Q, YANG Y Z, CAO H L, SUN J N, REN J W, LIU Y, XIANG L J, LI W S, PAN M H, HU H T, CHEN Y H, XU Z R, HUANG Y, WANG W S, PAN G H. Uncovering the molecular landscape of tetracycline family natural products through bacterial genome mining[J]. J. Am. Chem. Soc., 2025, 147(18): 15100-15114  doi: 10.1021/jacs.4c17551

    11. [11]

      OUYANG B W, LV Z Y, GAN C, YANG C, TONG L, SHI J B. Molecular mechanisms of antibiotic inhibition on microbial dissimilatory iron reduction[J]. J. Hazard. Mater., 2025, 493: 138348  doi: 10.1016/j.jhazmat.2025.138348

    12. [12]

      HE X H, KAI T H, DING P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: A review[J]. Environ. Chem. Lett., 2021, 19(6): 4563-4601  doi: 10.1007/s10311-021-01295-8

    13. [13]

      LI D Z, HUANG W X, HUANG R F. Analysis of environmental pollutants using ion chromatography coupled with mass spectrometry: A review[J]. J. Hazard. Mater., 2023, 458: 131952  doi: 10.1016/j.jhazmat.2023.131952

    14. [14]

      LIU X G, HUANG D L, LAI C, ZENG G M, QIN L, ZHANG C, YI H, LI B S, DENG R, LIU S Y, ZHANG Y J. Recent advances in sensors for tetracycline antibiotics and their applications[J]. Trac-Trends Anal. Chem., 2018, 109: 260-274  doi: 10.1016/j.trac.2018.10.011

    15. [15]

      KUSWANDI B. Nanobiosensor approaches for pollutant monitoring[J]. Environ. Chem. Lett., 2018, 17(2): 975-990

    16. [16]

      FAHEEM M, AZIZ S, JING X F, MA T T, DU J Y, SUN F X, TIAN Y Y, ZHU G S. Dual luminescent covalent organic frameworks for nitro-explosive detection[J]. J. Mater. Chem. A, 2019, 7(47): 27148-27155  doi: 10.1039/C9TA09497K

    17. [17]

      PAN X R, HOU X X, DU Y H, PANG Z X, HE S Y, WANG L, YANG J X, MAO L F, QIN J H, WU H X, LIU B Z, ZHOU Z, MA L F, TAN C L. Solvent-mediated synthesis of 2D In-TCPP MOF nanosheets for enhanced photodynamic antibacterial therapy[J]. Chin. Chem. Lett., 2024, DOI: 10.1016/j.cclet.2024.110536  doi: 10.1016/j.cclet.2024.110536

    18. [18]

      HE S Y, CHU D D, PANG Z X, DU Y H, WANG J Y, CHEN Y H, SU Y M, QIN J H, PAN X R, ZHOU Z, LI J G, MA L F, TAN C L. Pt single-atom-functionalized 2D Al-TCPP MOF nanosheets for enhanced photodynamic antimicrobial therapy[J]. Acta Phys.‒Chim. Sin., 2025, 41(5): 100046

    19. [19]

      GHORAI P, MONDAL U, HAZRA A, BANERJEE P. Luminescent metal organic frameworks (LMOFs) and allied composites for the unveiling of organic environmental contaminants (explosive NACS, PAHS and EDCS) sensing through 'Molecular Recognition': A chronicle of recent penetration and future modelling[J]. Coord. Chem. Rev., 2024, 518: 216085  doi: 10.1016/j.ccr.2024.216085

    20. [20]

      GAO P, MUKHERJEE S, HUSSAIN M Z, YE S, WANG X S, LI W J, CAO R, ELSNER M, FISCHER R A. Porphyrin-based MOFs for sensing environmental pollutants[J]. Chem. Eng. J., 2024, 492: 152377  doi: 10.1016/j.cej.2024.152377

    21. [21]

      YANG G L, JIANG X L, XU H, ZHAO B. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small, 2021, 17(22): 2005327  doi: 10.1002/smll.202005327

    22. [22]

      LI Q, WU Z Q, LI D, LIU T H, YIN H Y, CAI X B, ZHU W, FAN Z L, LI R Z. A Tb3+-anchored Zr(Ⅳ)-bipyridine MOF to promote photo-induced electron transfer and simultaneously enhance photoluminescence ability and photocatalytic reduction efficiency towards Cr2O72-[J]. J. Mater. Chem. A, 2023, 11(6): 2957-2968  doi: 10.1039/D2TA07769H

    23. [23]

      LIU A G, MENG X Y, CHEN Y, CHEN Z T, LIU P D, LI B. Introducing a pyrazinoquinoxaline derivative into a metal-organic framework: Achieving fluorescence-enhanced detection for Cs+ and enhancing photocatalytic activity[J]. ACS Appl. Mater. Interfaces, 2023, 16(1): 669-683

    24. [24]

      ZHU N F, YUAN K J, XIONG D H, AI F X, ZENG K, ZHAO B Y, ZHANG Z, ZHAO H J. A high-throughput fluorescence immunoassay based on conformational locking strategy of MOFs to enhance AIE effect of CuNCs-CS for bisphenol S analysis in food samples[J]. Chem. Eng. J., 2023, 462: 142129  doi: 10.1016/j.cej.2023.142129

    25. [25]

      JIANG Y S, CHANG W X, LI Z H, ZHOU X, ZHANG P J, HUANG X H, PAN X Y, HE Z D, WANG Y, TIAN Z Q. Synergistic aggregation-induced emissive linkers in metal-organic frameworks for ultrasensitive and quantitative visual sensing[J]. JACS Au, 2025, 5(4): 1875-1883  doi: 10.1021/jacsau.5c00092

    26. [26]

      TAN F C, DONG N, HE J D, YUAN L H, LIN Z T, LIU X Y, YANG X G, LI B J. Morphology engineering of aggregation-induced emission-based metal-organic frameworks templated with cellulose nanocrystals for lactic acid detection[J]. ACS Mater. Lett., 2025, 7: 2041-2048  doi: 10.1021/acsmaterialslett.4c02575

    27. [27]

      LI W B, WU Y, ZHONG X F, CHEN X H, LIANG G, YE J W, MO Z W, CHEN X M. Fluorescence enhancement of a metal-organic framework for ultra-efficient detection of trace benzene vapor[J]. Angew. Chem.‒Int. Edit., 2023, 62(24): e202303500  doi: 10.1002/anie.202303500

    28. [28]

      WEI Q, WANG K, HE C, WEI L, LI X F, ZHANG S, AN X T, LI J H, WANG G M. Linear and nonlinear optical properties of centrosymmetric SB4O5SO4 and noncentrosymmetric SB4O4(SO4)(OH)2 induced by lone pair stereoactivity[J]. Inorg. Chem., 2021, 60(15): 11648-11654  doi: 10.1021/acs.inorgchem.1c01653

    29. [29]

      ZHU Z H, LI Y L, WANG H L, ZOU H H, LIANG F P, ZHOU L. Designing pillar-layered metal-organic frameworks with photo-induced electron transfer interactions between ligands for enhanced photodynamic sterilization and photocatalytic degradation of dyes and antibiotics[J]. J. Colloid Interface Sci., 2025, 685: 458-467  doi: 10.1016/j.jcis.2025.01.148

    30. [30]

      DING S P, WANG X F. Terbium-based metal organic framework and its immobilized nanofibrous membrane for selective detection and efficient removal of phosphate[J]. Chem. Eng. J., 2023, 464: 142751  doi: 10.1016/j.cej.2023.142751

    31. [31]

      GAO C, LIU L Y, TAN Z Q, WANG X M, YANG T, ZHOU X H, XIAO H P, YOU Y J. An ultrasensitive self-calibrating terbium metal organic framework for the detection of amphotericin B[J]. Appl. Organomet. Chem., 2024, 39(3): e7892

    32. [32]

      CHEN L T, LI Z J, DOU Y M, WANG H L, CHEN C Y, WANG X D. Ratiometric fluoroprobe based on Eu-MOF@Tb3+ for detecting tetracycline hydrochloride in freshwater fish and its application in rapid visual detection[J]. J. Hazard. Mater., 2024, 469: 134045  doi: 10.1016/j.jhazmat.2024.134045

    33. [33]

      ZHANG Y H, WEI P H, LI Z W, SUN Y Z, LIU Y N, HUANG S Y. Advancements in rare earth metal-organic frameworks: Harnessing the power of photonics and beyond[J]. Coord. Chem. Rev., 2024, 514: 215905  doi: 10.1016/j.ccr.2024.215905

    34. [34]

      HAN S D, LIU A U, WEI Q, HU J X, PAN J, WANG G M. Quadruple photoresponsive functionality in a crystalline hybrid material: Photochromism, photomodulated fluorescence, magnetism and nonlinear optical properties[J]. Chem.‒Eur. J., 2021, 27(29): 7842-7846  doi: 10.1002/chem.202100696

    35. [35]

      ZHANG W J, SUN W Z, XU J T, OU B Q, ZHOU W Q, CHEN L, YE J W, PAN M. Lanthanide antenna amplifier multiplies the optical sensing efficiency in phototautomeric metal-organic frameworks[J]. J. Am. Chem. Soc., 2025, 147(20): 17486-17496  doi: 10.1021/jacs.5c04171

    36. [36]

      CHEN J, GUO T T, GAO H Y, HE T, LI J, LI H J, LIU X Y, LI A. Eu3+-doped mixed-ligand UIO-66-type metal-organic framework for ratiometric fluorescence sensing fluoride ions with ultralow detection limit[J]. ACS Appl. Mater. Interfaces, 2024, 16(44): 60278-60287  doi: 10.1021/acsami.4c13284

    37. [37]

      AMEEN S S M, OMER K M. Merging dual antenna effect with target-insensitive behavior in bimetal biligand MOFs to form efficient internal reference signal: Color tonality-ratiometric designs[J]. ACS Mater. Lett., 2024, 6(6): 2339-2349  doi: 10.1021/acsmaterialslett.4c00845

    38. [38]

      CHEN Q Q, CHENG J H, WANG J, LI L, LIU Z P, ZHOU X H, YOU Y J, HUANG W. A fluorescent Eu(Ⅲ) MOF for highly selective and sensitive sensing of picric acid[J]. Sci. China‒Chem., 2018, 62(2): 205-211

    39. [39]

      WANG H L, LI Y L, ZOU H H, LIANG F P, ZHU Z H. Smart lanthanide metal-organic frameworks with multicolor luminescence switching induced by the dynamic adaptive antenna effect of molecular rotors[J]. Adv. Mater., 2025, 37(29): 2502742  doi: 10.1002/adma.202502742

    40. [40]

      WU S Y, LIN Y N, LIU J W, SHI W, YANG G M, CHENG P. Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal-organic framework sensor[J]. Adv. Funct. Mater., 2018, 28(17): 1707169  doi: 10.1002/adfm.201707169

    41. [41]

      ZHU Y, WANG Y M, LIU P, XIA C K, WU Y L, LU X Q, XIE J M. Two chelating-amino-functionalized lanthanide metal-organic frameworks for adsorption and catalysis[J]. Dalton Trans., 2015, 44(4): 1955-1961  doi: 10.1039/C4DT02048K

    42. [42]

      WANG Y X, LU Y, ZHANG W S, DANG T Y, YANG Y L, BAI X, LIU S X. Construction of hydrogel composites with superior proton conduction and flexibility using a new POM-based inorganic-organic hybrid[J]. Polyoxometalates, 2022, 1(1): 9140005  doi: 10.26599/POM.2022.9140005

    43. [43]

      CUI Y B, CAO J D, LIN J W, LI C X, YAO J Y, LIU K J, HOU A, GUO Z N, ZHAO J, LIU Q L. Advancing nonlinear optics: Discovery and characterization of new non-centrosymmetric phenazine-based halides[J]. Dalton Trans., 2024, 53(24): 10235-10243  doi: 10.1039/D4DT01096E

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    3. [3]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    4. [4]

      Ruiyan CHENYanping HEJian ZHANG . Synthesis and third-order nonlinear optical property of Ti4L6 cage-based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2149-2156. doi: 10.11862/CJIC.20250177

    5. [5]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    6. [6]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    7. [7]

      Hongzhe GUOSen WANGLu YANGFucheng LIUJiongpeng ZHAOZhaoquan YAO . Highly selective acetylene capture by a pacs-type metal-organic framework constructed using metal-formate complexes as pore partition units. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2157-2164. doi: 10.11862/CJIC.20250179

    8. [8]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    9. [9]

      Xinnan XIEBoyu ZHANGJianxun YANGYi ZHONGYounis OsamaJianxiao YANGXinchun YANG . Ultrafine platinum clusters achieved by metal-organic framework derived cobalt nanoparticle/porous carbon: Remarkable catalytic performance in dehydrogenation of ammonia borane. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2095-2102. doi: 10.11862/CJIC.20250025

    10. [10]

      Shanqing YANGLulu WANGQiang ZHANGJiajia LIYilong LITongliang HU . A propane-selective metal-organic framework for inverse selective adsorption propane/propylene separation. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2138-2148. doi: 10.11862/CJIC.20250154

    11. [11]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    12. [12]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    13. [13]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    14. [14]

      Ri PENGYingxiang BAIYuxin XIEDunru ZHUcis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1650-1660. doi: 10.11862/CJIC.20250143

    15. [15]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    18. [18]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(0)
  • Abstract views(25)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return