Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction
- Corresponding author: Zhan SHI, zshi@mail.jlu.edu.cn
Citation:
Ruige ZHANG, Zhe ZHANG, He ZHENG, Zhan SHI. Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(10): 2011-2028.
doi:
10.11862/CJIC.20250185
SEH Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NØRSKOV J K, JARAMILLO T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998
doi: 10.1126/science.aad4998
ZHANG Z, LIU Y X, QI Y H, YU Z C, CHEN X B, LI C G, SHI Z, FENG S H. "Self-catalysis" acceleration of carrier transport in one-dimensional covalent organic frameworks with mortise-tenon stacking[J]. Angew. Chem.‒Int. Edit., 2025, 64(17): e202501614
doi: 10.1002/anie.202501614
WANG W, XU X, ZHOU W, SHAO Z. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting[J]. Adv. Sci., 2017, 4(4): 1600371
doi: 10.1002/advs.201600371
LI Y X, ZHANG Z, YANG Y L, LI C G, SHI Z, FENG S H. Manipulation of electrochemical surface reconstruction on spinel oxides for boosted water oxidation reaction[J]. ACS Catal., 2025, 15(10): 8361-8389
doi: 10.1021/acscatal.5c01964
CHAI R L, ZHAO Q, LI J, DONG Z J, SUN Y X, WANG X C, ZHANG P L, WU W T, LI G Y, ZHAO J, LI S H. Superior oxygen evolution electrocatalyst based on Ni-ellagic acid coordination polymer[J]. Adv. Energy Mater., 2024, 14(27): 2400871
doi: 10.1002/aenm.202400871
ZHANG Y Q, TAO L, XIE C, WANG D D, ZOU Y Q, CHEN R, WANG Y Y, JIA C K, WANG S Y. Defect engineering on electrode materials for rechargeable batteries[J]. Adv. Mater., 2020, 32(7): 1905923
doi: 10.1002/adma.201905923
LI C F, LI D N, LI L B, YANG H Z, ZHANG Y, SU J Z, WANG L, LIU B. CNT-supported RuNi composites enable high round-trip efficiency in regenerative fuel cells[J]. Adv. Mater., 2025, 37(18): 2500416
doi: 10.1002/adma.202500416
ZHANG J T, XIA Z H, DAI L M. Carbon-based electrocatalysts for advanced energy conversion and storage[J]. Sci. Adv., 2015, 1(7): e1500564
doi: 10.1126/sciadv.1500564
ZHANG Z, ZHANG Z Q, XIE M G, TIAN R, CHAI C X, XU R A, CHEN X B, SONG Y J, LU H Y, SHI Z, FENG S H. Enhancing oxygen reduction reaction through asymmetric electronic structure-mediated d-π interaction[J]. CCS Chem., 2025, 7(3): 867-882
doi: 10.31635/ccschem.024.202405248
XIONG Y C, WANG Y H, ZHOU J W, LIU F, HAO F K, FAN Z X. Electrochemical nitrate reduction: Ammonia synthesis and the beyond[J]. Adv. Mater., 2024, 36(17): 2304021
doi: 10.1002/adma.202304021
CUI X Y, TANG C, ZHANG Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Adv. Energy Mater., 2018, 8(22): 1800369
doi: 10.1002/aenm.201800369
YOU M Z, DU X, HOU X H, WANG Z Y, ZHOU Y, JI H P, ZHANG L Y, ZHANG Z T, YI S S, CHEN D L. In situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER[J]. Appl. Catal. B‒Environ., 2022, 317: 121729
doi: 10.1016/j.apcatb.2022.121729
ZHANG J H, FU X B, KWON S, CHEN K F, LIU X Z, YANG J, SUN H R, WANG Y C, UCHIYAMA T, UCHIMOTO Y, LI S F, LI Y, FAN X L, CHEN G, XIA F J, WU J S, LI Y B, YUE Q, QIAO L, SU D, ZHOU H, GODDARD W A, KANG Y J. Tantalum-stabilized ruthenium oxide electrocatalysts for industrial water electrolysis[J]. Science, 2025, 387(6729): 48-55
doi: 10.1126/science.ado9938
SU W X, WANG D H, ZHOU Q, ZHENG X P. Preparation of 3D Fe-Co-Ni-OH/NiCoP electrode as a highly efficient electrocatalyst in the oxygen evolution reactions[J]. J. Alloy. Compd., 2023, 941: 168578
doi: 10.1016/j.jallcom.2022.168578
ZHANG Z Q, ZHANG Z, CHEN C L, WANG R, XIE M G, WAN S, ZHANG R G, CONG L C, LU H Y, HAN Y, XING W, SHI Z, FENG S H. Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis[J]. Nat. Commun., 2024, 15: 2556
doi: 10.1038/s41467-024-46872-x
LI Y X, ZHANG Z, LI C G, HOU X Y, ZENG J R, CHEN X B, SHI Z, FENG S H. Cation-vacancy-induced reinforced electrochemical surface reconstruction on spinel nickel ferrite for boosting water oxidation[J]. Adv. Funct. Mater., 2024, 35(13): 2417983
PENG Y, SANATI S, MORSALI A, GARCÍA H. Metal-organic frameworks as electrocatalysts[J]. Angew. Chem.‒Int. Edit., 2023, 62(9): e202214707
doi: 10.1002/anie.202214707
ZOU Y H, HUANG Y B, SI D H, YIN Q, WU Q J, WENG Z X, CAO R. Porous metal-organic framework liquids for enhanced CO2 adsorption and catalytic conversion[J]. Angew. Chem.‒Int. Edit., 2021, 60(38): 20915-20920
doi: 10.1002/anie.202107156
WANG R, WANG Z Y, ZHANG Y, SHAHEER A R M, LIU T F, CAO R. Bridging atom engineering for low-temperature oxygen activation in a robust metal-organic framework[J]. Angew. Chem.‒Int. Edit., 2024, 63(27): e202400160
doi: 10.1002/anie.202400160
CHEN O I, LIU C H, WANG K, BORREGO-MARIN E, LI H, ALAWADHI A H, NAVARRO J A R, YAGHI O M. Water-enhanced direct air capture of carbon dioxide in metal-organic frameworks[J]. J. Am. Chem. Soc., 2024, 146: 2835-2844
doi: 10.1021/jacs.3c14125
YOSHINO H, SAIGO M, EHARA T, MIYATA K, ONDA K, PIRILLO J, HIJIKATA Y, TAKAISHI S, KOSAKA W, OTAKE K I, KITAGAWA S, MIYASAKA H. Ultrafast luminescence detection with selective adsorption of carbon disulfide in a gold(Ⅰ) metal-organic framework[J]. Angew. Chem.‒Int. Edit., 2025, 64(5): e202413830
doi: 10.1002/anie.202413830
WANG Z Y, HUANG Y C, ZHANG T S, XU K Q, LIU X L, ZHANG A R, XU Y, ZHOU X, DAI J W, JIANG Z N, ZHANG G A, LIU H F, XIA B Y. Unipolar solution flow in calcium-organic frameworks for seawater-evaporation-induced electricity generation[J]. J. Am. Chem. Soc., 2024, 146(2): 1690-1700
doi: 10.1021/jacs.3c13159
LI H, EDDAOUDI M, O′KEEFFE M, YAGHI O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402: 276-279
doi: 10.1038/46248
ZHU H L, HUANG J R, LIAO P Q, CHEN X M. Rational design of metal-organic frameworks for electroreduction of CO2 to hydrocarbons and carbon oxygenates[J]. ACS Cent. Sci., 2022, 8(11): 1506-1517
doi: 10.1021/acscentsci.2c01083
ZHU B J, XIA D G, ZOU R Q. Metal-organic frameworks and their derivatives as bifunctional electrocatalysts[J]. Coord. Chem. Rev., 2018, 376: 430-448
doi: 10.1016/j.ccr.2018.07.020
WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chem. Rev., 2020, 120(2): 1438-1511
doi: 10.1021/acs.chemrev.9b00223
ZHENG Y T, LI S M, HUANG N Y, LI X, XU Q. Recent advances in metal-organic framework-derived materials for electrocatalytic and photocatalytic CO2 reduction[J]. Coord. Chem. Rev., 2024, 510: 215858
doi: 10.1016/j.ccr.2024.215858
BABU K F, KULANDAINATHAN M A, KATSOUNAROS I, RASSAEI L, BURROWS A D, RAITHBY P R, MARKEN F. Electrocatalytic activity of BasoliteTM F300 metal-organic-framework structures[J]. Electrochem. Commun., 2010, 12(5): 632-635
doi: 10.1016/j.elecom.2010.02.017
YANG D X, CHEN Y F, SU Z, ZHANG X J, ZHANG W L, SRINIVAS K. Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation[J]. Coord. Chem. Rev., 2021, 428: 213619
doi: 10.1016/j.ccr.2020.213619
ZHANG B, ZHENG Y J, MA T, YANG C D, PENG Y F, ZHOU Z H, ZHOU M, LI S, WANG Y H, CHENG C. Designing MOF nanoarchitectures for electrochemical water splitting[J]. Adv. Mater., 2021, 33(17): 2006042
doi: 10.1002/adma.202006042
JADHAV H S, BANDAL H A, RAMAKRISHNA S, KIM H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting[J]. Adv. Mater., 2022, 34(11): 2107072
doi: 10.1002/adma.202107072
KHAN U, NAIRAN A, GAO J K, ZHANG Q C. Current progress in 2D metal-organic frameworks for electrocatalysis[J]. Small Struct., 2023, 4(6): 2200109
doi: 10.1002/sstr.202200109
LAMIEL C, HUSSAIN I, RABIEE H, OGUNSAKIN O R, ZHANG K L. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems[J]. Coord. Chem. Rev., 2023, 480: 215030
doi: 10.1016/j.ccr.2023.215030
YANG S J, LIU X H, LI S S, YUAN W J, YANG L, WANG T, ZHENG H Q, CAO R, ZHANG W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts[J]. Chem. Soc. Rev., 2024, 53(11): 5593-5625
doi: 10.1039/D3CS01031G
DAU H, LIMBERG C, REIER T, RISCH M, ROGGAN S, STRASSER P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis[J]. ChemCatChem, 2010, 2(7): 724-761
doi: 10.1002/cctc.201000126
LIAO P L, KEITH J A, CARTER E A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis[J]. J. Am. Chem. Soc., 2012, 134(32): 13296-13309
doi: 10.1021/ja301567f
MAN I C, SU H Y, CALLE-VALLEJO F, HANSEN H A, MARTÍNEZ J I, INOGLU N G, KITCHIN J, JARAMILLO T F, NØRSKOV J K, ROSSMESIL J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165
doi: 10.1002/cctc.201000397
QI Q L, ZHANG Y, ZHANG C X, LIU F, LIU R J, HU J. Halogen-modified iron-based metal-organic frameworks for remarkably improved electrocatalytic oxygen evolution[J]. J. Phys. Chem. C, 2024, 128(5): 1936-1945
doi: 10.1021/acs.jpcc.3c06800
ZHANG C X, QI Q L, MEI Y J, HU J, SUN M Z, ZHANG Y J, HUANG B L, ZHANG L B, YANG S H. Rationally reconstructed metal-organic frameworks as robust oxygen evolution electrocatalysts[J]. Adv. Mater., 2023, 35(8): 2208904
doi: 10.1002/adma.202208904
ZHANG K X, ZOU R Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges[J]. Small, 2021, 17(37): 2100129
doi: 10.1002/smll.202100129
DAMJANOVIC A, JOVANOVIC B. Anodic oxide films as barriers to charge transfer in O2 evolution at Pt in acid solutions[J]. J. Electrochem. Soc., 1976, 123: 374-378
doi: 10.1149/1.2132828
BINNINGER T, MOHAMED R, WALTAR K, FABBRI E, LEVECQUE P, KÖTZ R, SCHMIDT T J. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts[J]. Sci. Rep., 2015, 5: 12167
doi: 10.1038/srep12167
GUAN S Q, XU B E, YU X B, YE Y H, LIU Y T, GUAN T T, YANG Y, GAO J L, LI K X, WANG J L. Activation of lattice oxygen in nitrogen-doped high-entropy oxide nanosheets for highly efficient oxygen evolution reaction[J]. ACS Catal., 2024, 14(23): 17806-17817
doi: 10.1021/acscatal.4c05997
WANG X P, XI S B, HUANG P R, DU Y H, ZHONG H Y, WANG Q, BORGNA A, ZHANG Y W, WANG Z B, WANG H, YU Z G, LEE W S V, XUE J M. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution[J]. Nature, 2022, 611: 702-708
doi: 10.1038/s41586-022-05296-7
TOMAR A K, PAN U N, KIM N H, LEE J H. Enabling lattice oxygen participation in a triple perovskite oxide electrocatalyst for the oxygen evolution reaction[J]. ACS Energy Lett., 2023, 8(1): 565-573
doi: 10.1021/acsenergylett.2c02617
XIN S S, TANG Y, JIA B H, ZHANG Z F, LI C P, BAO R, LI C J, YI J H, WANG J S, MA T Y. Coupling adsorbed evolution and lattice oxygen mechanism in Fe-Co(OH)2/Fe2O3 heterostructure for enhanced electrochemical water oxidation[J]. Adv. Funct. Mater., 2023, 33(45): 2305243
doi: 10.1002/adfm.202305243
GONG S Y, ZHANG T Y, MENG J, SUN W M, TIAN Y. Advances in the mechanism investigation for the oxygen evolution reaction: Fundamental theory and monitoring techniques[J]. Mater. Chem. Front., 2024, 8(3): 603-626
doi: 10.1039/D3QM00935A
RONG C L, HUANG X Y, ARANDIYAN H, SHAO Z P, WANG Y, CHEN Y. Advances in oxygen evolution reaction electrocatalysts via direct oxygen-oxygen radical coupling pathway[J]. Adv. Mater., 2025, 37(9): 2416362
doi: 10.1002/adma.202416362
LI Z Y, WANG D, KANG H G, SHI Z N, HU X W, SUN H B, XU J L. Triggering the oxide path mechanism of oxygen evolution reaction: Introducing compressive strain on NiFe-LDH by partial replacement using Ba cations[J]. J. Colloid Interface Sci., 2025, 690: 137329
doi: 10.1016/j.jcis.2025.137329
LIU B S, ZHONG H Y, LIU J, YU J C, ZHANG Q, LOH J R, ZHAO L P, ZHANG P, GAO L, XUE J M. Modulation of electrochemical reactions through external stimuli: Applications in oxygen evolution reaction and beyond[J]. ACS Nano, 2025, 19(5): 5110-5130
doi: 10.1021/acsnano.5c00099
LIN C, LI J L, LI X P, YANG S, LUO W, ZHANG Y J, KIM S H, KIM D H, SHINDE S S, LI Y F, LIU Z P, JIANG Z, LEE J H. In situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation[J]. Nat. Catal., 2021, 4: 1012-1023
doi: 10.1038/s41929-021-00703-0
LIU M H, BO S W, ZHANG J, LIU Q H, PAN J, SU H. Tracking the role of compressive strain in bowl-like Co-MOFs structural evolution in water oxidation reaction[J]. Appl. Catal. B‒Environ. Energy, 2024, 354: 124114
doi: 10.1016/j.apcatb.2024.124114
SINGH B, YADAVA A, INDRA A. Realizing electrochemical transformation of a metal-organic framework precatalyst into a metal hydroxide-oxy(hydroxide) active catalyst during alkaline water oxidation[J]. J. Mater. Chem. A, 2022, 10(8): 3843-3868
doi: 10.1039/D1TA09424F
CHEN S Y, ZHANG S S, GUO L, PAN L, SHI C X, ZHANG X W, HUANG Z F, YANG G D, ZOU J J. Reconstructed Ir-O-Mo species with strong Brønsted acidity for acidic water oxidation[J]. Nat. Commun., 2023, 14: 4127
doi: 10.1038/s41467-023-39822-6
FABBRI E, NACHTEGAAL M, BINNINGER T, CHENG X, KIM B J, DURST J, BOZZA F, GRAULE T, SCHAUBLIN R, WILES L, PERTOSO M, DANILOVIC N, AYERS K E, SCHMIDT T J. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting[J]. Nat. Mater., 2017, 16: 925-931
doi: 10.1038/nmat4938
TANG Y, WU C, ZHANG Q, ZHONG H Y, ZOU A Q, LI J H, MA Y F, AN H, YU Z G, XI S B, XUE J M, WANG X P, WU J G. Accelerated surface reconstruction through regulating the solid-liquid interface by oxyanions in perovskite electrocatalysts for enhanced oxygen evolution[J]. Angew. Chem.‒Int. Edit., 2023, 62(37): e202309107
doi: 10.1002/anie.202309107
WU Y Z, ZHAO Y Y, ZHAI P L, WANG C, GAO J F, SUN L C, HOU J G. Triggering lattice oxygen activation of single-atomic Mo sites anchored on Ni-Fe oxyhydroxides nanoarrays for electrochemical water oxidation[J]. Adv. Mater., 2022, 34(29): 2202523
doi: 10.1002/adma.202202523
YAO Y D, ZHAO G M, GUO X Y, XIONG P, XU Z H, ZHANG L H, CHEN C S, XU C, WU T S, SOO Y L, CUI Z M, LI M M J, ZHU Y. Facet-dependent surface restructuring on nickel (oxy)hydroxides: A self-activation process for enhanced oxygen evolution reaction[J]. J. Am. Chem. Soc., 2024, 146(22): 15219-15229
doi: 10.1021/jacs.4c02292
WU Z P, ZUO S W, PEI Z H, ZHANG J, ZHENG L R, LUAN D Y, ZHANG H B, LOU X W D. Operando unveiling the activity origin via preferential structural evolution in Ni-Fe (oxy)phosphides for efficient oxygen evolution[J]. Sci. Adv., 2025, 11(10): eadu5370
doi: 10.1126/sciadv.adu5370
ZHANG F, WANG K, ZHANG H, YANG S, XU M, HE Y, LEI L, XIE P, ZHANG X. Dynamic reconstruction of Ce-doped Fe2P/NiCoP hybrid for ampere-level oxygen evolution in anion exchange membrane water electrolysis[J]. Adv. Funct. Mater., 2025: 2500861
PENG W F, DESHMUKH A, CHEN N, LV Z X, ZHAO S J, LI J, YAN B M, GAO X, SHANG L, GONG Y T, WU L L, CHEN M Y, ZHANG T R, GOU H Y. Deciphering the dynamic structure evolution of Fe- and Ni-codoped CoS2 for enhanced water oxidation[J]. ACS Catal., 2022, 12(7): 3743-3751
doi: 10.1021/acscatal.2c00328
LIU H W, SHI W H, GUO Y Q, MEI Y J, RAO Y, CHEN J L, LIU S J, LIN C, NIE A M, WANG Q, YUAN Y F, XIA B Y, YAO Y G. Supersaturated doping-induced maximized metal-support interaction for highly active and durable oxygen evolution[J]. ACS Nano, 2024, 18(43): 29724-29735
doi: 10.1021/acsnano.4c09249
LI S, CHEN B B, WANG Y, YE M Y, VAN AKEN P A, CHENG C, THOMAS A. Oxygen-evolving catalytic atoms on metal carbides[J]. Nat. Mater., 2021, 20: 1240-1247
doi: 10.1038/s41563-021-01006-2
YIN Z, HUANG Y, SONG K, LI T, CUI J, MENG C, ZHANG H. Ir single atoms boost metal-oxygen covalency on selenide-derived NiOOH for direct intramolecular oxygen coupling[J]. J. Am. Chem. Soc., 2024, 146(10): 6846-6855
doi: 10.1021/jacs.3c13746
ZHENG W, LEE L Y S. Metal-organic frameworks for electrocatalysis: Catalyst or precatalyst?[J]. ACS Energy Lett., 2021, 6(8): 2838-2843
doi: 10.1021/acsenergylett.1c01350
DUAN Y D, LI H, SHI X S, JI C Q, IMBROGNO J, ZHAO D. Stability of metal-organic frameworks in organic media with acids and bases[J]. Ind. Eng. Chem. Res., 2025, 64(10): 5372-5382
doi: 10.1021/acs.iecr.4c04326
PEARSON R G. Hard and soft acids and bases[J]. J. Am. Chem. Soc., 1963, 85(22): 3533-3539
doi: 10.1021/ja00905a001
LIU Y, WANG S J, LI Z Z, CHU H Q, ZHOU W. Insight into the surface-reconstruction of metal-organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction[J]. Coord. Chem. Rev., 2023, 484: 215117
doi: 10.1016/j.ccr.2023.215117
YUAN S, PENG J Y, CAI B, HUANG Z H, GARCIA-ESPARZA A T, SOKARAS D, ZHANG Y R, GIORDANO L, AKKIRAJU K, ZHU Y G, HÜBNER R, ZOU X D, ROMÁN-LESHKOV Y, SHAO-HORN Y. Tunable metal hydroxide-organic frameworks for catalysing oxygen evolution[J]. Nat. Mater., 2022, 21: 673-680
doi: 10.1038/s41563-022-01199-0
DING J T, FAN T, SHEN K, LI Y W. Electrochemical synthesis of amorphous metal hydroxide microarrays with rich defects from MOFs for efficient electrocatalytic water oxidation[J]. Angew. Chem.‒Int. Edit., 2020, 59(31): 13101-13108
doi: 10.1002/anie.202004420
TIAN J Y, JIANG F L, YUAN D Q, ZHANG L J, CHEN Q H, HONG M C. Electric-field assisted in situ hydrolysis of bulk metal-organic frameworks (MOFs) into ultrathin metal oxyhydroxide nanosheets for efficient oxygen evolution[J]. Angew. Chem.‒Int. Edit., 2020, 59(31): 13101-13108
doi: 10.1002/anie.202004420
ZHENG D J, GÖRLIN M, MCCORMACK K, KIM J, PENG J Y, XU H B, MA X X, LEBEAU J M, FISCHER R A, ROMÁN-LESHKOV Y, SHAO-HORN Y. Linker-dependent stability of metal-hydroxide organic frameworks for oxygen evolution[J]. Chem. Mater., 2023, 35(13): 5017-5031
doi: 10.1021/acs.chemmater.3c00316
ZHANG L, WANG J J, JIANG K, XIAO Z H, GAO Y T, LIN S W, CHEN B. Self-reconstructed metal-organic framework heterojunction for switchable oxygen evolution reaction[J]. Angew. Chem.‒Int. Edit., 2022, 61(51): e202214794
doi: 10.1002/anie.202214794
LIU D P, YAN Y D, LI H, LIU D D, YANG Y D, LI T Z, DU Y, YAN S C, YU T, ZHOU W, CUI P X, ZOU Z G. A template editing strategy to create interlayer-confined active species for efficient and durable oxygen evolution reaction[J]. Adv. Mater., 2023, 35(2): 2203420
doi: 10.1002/adma.202203420
ZHENG W R, LIU M J, LEE L Y S. Electrochemical instability of metal-organic frameworks: In situ spectroelectrochemical investigation of the real active sites[J]. ACS Catal., 2020, 10(1): 81-92
doi: 10.1021/acscatal.9b03790
ZHOU J, QIAO F, REN Z C, HOU X B, CHEN Z K, DAI S X, SU G, CAO Z W, JIANG H Q, HUANG M H. Amorphization engineering of bimetallic metal-organic frameworks to identify volcano-type trend toward oxygen evolution reaction[J]. Adv. Funct. Mater., 2024, 34(1): 2304380
doi: 10.1002/adfm.202304380
ZHAO S L, TAN C H, HE C T, AN P F, XIE F, JIANG S, ZHU Y F, WU K H, ZHANG B W, LI H J, ZHANG J, CHEN Y, LIU S Q, DONG J C, TANG Z Y. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction[J]. Nat. Energy, 2020, 5: 881-890
doi: 10.1038/s41560-020-00709-1
XU Y T, YE Z M, YE J W, CAO L M, HUANG R K, WU J X, ZHOU D D, ZHANG X F, HE C T, ZHANG J P, CHEN X M. Non-3d metal modulation of a cobalt imidazolate framework for excellent electrocatalytic oxygen evolution in neutral media[J]. Angew. Chem.‒Int. Edit., 2019, 58(1): 139-143
doi: 10.1002/anie.201809144
YANG J, SHEN Y, XIAN J H, XIANG R N, LI G Q. Rare-earth element doped NiFe-MOFs as efficient and robust bifunctional electrocatalysts for both alkaline freshwater and seawater splitting[J]. Chem. Sci., 2025, 16(2): 685-692
doi: 10.1039/D4SC06574C
LI F, TIAN Y H, SU S B, WANG C S, LI D S, CAI D D, ZHANG S Q. Theoretical and experimental exploration of tri-metallic organic frameworks (t-MOFs) for efficient electrocatalytic oxygen evolution reaction[J]. Appl. Catal. B‒Environ., 2021, 299: 120665
doi: 10.1016/j.apcatb.2021.120665
LI F L, SHAO Q, HUANG X, LANG J P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis[J]. Angew. Chem.‒Int. Edit., 2018, 57(7): 1888-1892
doi: 10.1002/anie.201711376
DISSEGNA S, EPP K, HEINZ W R, KIESLICH G, FISCHER R A. Defective metal-organic frameworks[J]. Adv. Mater., 2018, 30(37): 1704501
doi: 10.1002/adma.201704501
ZHOU J, QIU S, HOU X B, NI T J, ZHANG C H, DAI S X, WANG X K, WANG G H, JIANG H Q, HUANG M H. Defect-driven stepwise activation of metal-organic frameworks toward industrial-level anion exchange membrane water electrolysis[J]. Angew. Chem.‒Int. Edit., 2025, 64(29): e202503787
doi: 10.1002/anie.202503787
XUE Z Q, LIU K, LIU Q L, LI Y L, LI M R, SU C Y, OGIWARA N, KOBAYASHI H, KITAGAWA H, LIU M, LI G Q. Missing-linker metal-organic frameworks for oxygen evolution reaction[J]. Nat. Commun., 2019, 10: 5048
doi: 10.1038/s41467-019-13051-2
DING J T, GUO D Y, WANG N S, WANG H F, YANG X F, SHEN K, CHEN L Y, LI Y W. Defect engineered metal-organic framework with accelerated structural transformation for efficient oxygen evolution reaction[J]. Angew. Chem.‒Int. Edit., 2023, 62(43): e202311909
doi: 10.1002/anie.202311909
CHU H Q, LI R J, FENG P P, WANG D Y, LI C X, YU Y L, YANG M. Ligands defect-induced structural self-reconstruction of Fe-Ni-Co-hydroxyl oxides with crystalline/amorphous heterophase from a 2D metal-organic framework for an efficient oxygen evolution reaction[J]. ACS Catal., 2024, 14(3): 1553-1566
doi: 10.1021/acscatal.3c05314
LI Y Q, ZHANG Y, WANG Z Y, ZHANG C X, MENG F M, ZHAO J Q, LI X P, HU J. Ultrasonic-assisted preparation of Fe-MOF with rich oxygen vacancies for efficient oxygen evolution[J]. Appl. Catal. A‒Gen., 2024, 683: 119851
doi: 10.1016/j.apcata.2024.119851
CHENG W R, ZHAO X, SU H, TANG F M, CHE W, ZHANG H, LIU Q H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis[J]. Nat. Energy, 2019, 4(2): 115-122
doi: 10.1038/s41560-018-0308-8
ŁUCZAK J, KROCZEWSKA M, BALUK M, SOWIK J, MAZIERSKI P, ZALESKA-MEDYŃSKA A. Morphology control through the synthesis of metal-organic frameworks[J]. Adv. Colloid Interface Sci., 2023, 314: 102864
doi: 10.1016/j.cis.2023.102864
YU D B, SHAO Q, SONG Q J, CUI J W, ZHANG Y L, WU B, GE L, WANG Y, ZHANG Y, QIN Y Q, VAJTAI R, AJAYAN P M, WANG H T, XU T W, WU Y C. A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures[J]. Nat. Commun., 2020, 11: 927
doi: 10.1038/s41467-020-14671-9
ZHAO S L, WANG Y, DONG J C, HE C T, YIN H J, AN P F, ZHAO K, ZHANG X F, GAO C, ZHANG L J, LV J W, WANG J X, ZHANG J Q, KHATTAK A M, KHAN N A, WEI Z X, ZHANG J, LIU S Q, ZHAO H J, TANG Z Y. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nat. Energy, 2016, 1: 16184
doi: 10.1038/nenergy.2016.184
LI F L, WANG P, HUANG X, YOUNG D J, WANG H F, BRAUNSTEIN P, LANG J P. Bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation[J]. Angew. Chem.‒Int. Edit., 2019, 58(21): 7051-7056
doi: 10.1002/anie.201902588
GE K, SUN S J, ZHAO Y, YANG K, WANG S, ZHANG Z H, CAO J Y, YANG Y F, ZHANG Y, PAN M W, ZHU L. Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis[J]. Angew. Chem.‒Int. Edit., 2021, 60(21): 12097-12102
doi: 10.1002/anie.202102632
ZOU Y Y, LIU C, ZHANG C Q, YUAN L, LI J X, BAO T, WEI G F, ZOU J, YU C Z. Epitaxial growth of metal-organic framework nanosheets into single-crystalline orthogonal arrays[J]. Nat. Commun., 2023, 14: 5780
doi: 10.1038/s41467-023-41517-x
SUN L, CAMPBELL M G, DINCĂ M. Electrically conductive porous metal-organic frameworks[J]. Angew. Chem.‒Int. Edit., 2016, 55(11): 3566-3579
doi: 10.1002/anie.201506219
TAKAISHI S, HOSODA M, KAJIWARA T, MIYASAKA H, YAMASHITA M, NAKANISHI Y, KITAGAWA Y, YAMAGUCHI K, KOBAYASHI A, KITAGAWA H. Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units[J]. Inorg. Chem., 2009, 48(19): 9048-9050
doi: 10.1021/ic802117q
LIU J J, XING G L, CHEN L. 2D conjugated metal-organic frameworks: Defined synthesis and tailor-made functions[J]. Acc. Chem. Res., 2024, 57(7): 1032-1045
doi: 10.1021/acs.accounts.3c00788
XING D N, WANG Y Y, ZHOU P, LIU Y Y, WANG Z Y, WANG P, ZHENG Z K, CHENG H F, DAI Y, HUANG B B. Co3(hexaiminotriphenylene)2: A conductive two-dimensional π-d conjugated metal-organic framework for highly efficient oxygen evolution reaction[J]. Appl. Catal. B‒Environ., 2020, 278: 119295
doi: 10.1016/j.apcatb.2020.119295
WANG Y T, BAI X W, HUANG J F, LI W Z, ZHANG J H, LI H, LONG Y, PENG Y, XU C L. Tetrahydroxybenzoquinone-based two-dimensional conductive metal-organic framework via π-d conjugation modulation for enhanced oxygen evolution reaction[J]. ACS Catal., 2024, 14(21): 16532-16542
doi: 10.1021/acscatal.4c04977
ZHAO Y F, LU X F, WU Z P, PEI Z H, LUAN D Y, LOU X W D. Supporting trimetallic metal-organic frameworks on S/N-doped carbon macroporous fibers for highly efficient electrocatalytic oxygen evolution[J]. Adv. Mater., 2023, 35(19): 2207888
doi: 10.1002/adma.202207888
CHEN K L, CHOU Y H, LIN T J, CHENG M J, HSIAO P K, PU Y C, CHEN I W P. Real-time monitoring of Fe-induced stable γ-NiOOH in binder-free FeNi MOF electrocatalysts for enhanced oxygen evolution[J]. Small, 2025: e2501142
LIU Y W, WANG L R, LIU C C, KRESS J, DECONINCK M, HUBNER R, MIKHAILOVA D, VAYNZOF Y, ZHANG X M, EYCHMULLER A. Electro-bendable metal-organic framework nanosheets enable durable electrocatalytic water oxidation at 1 A/cm2[J]. ACS Catal., 2025, 15: 9353-9363
doi: 10.1021/acscatal.5c02167
DUAN J J, CHEN S, ZHAO C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting[J]. Nat. Commun., 2017, 8: 15341
doi: 10.1038/ncomms15341
HU F, YU D S, ZENG W J, LIN Z Y, HAN S L, SUN Y J, WANG H, REN J W, HUNG S F, LI L L, PENG S J. Active site tailoring of metal-organic frameworks for highly efficient oxygen evolution[J]. Adv. Energy Mater., 2023, 13(29): 2301224
doi: 10.1002/aenm.202301224
SONG D Q, GUO H Z, HUANG K, ZHANG H Y, CHEN J, WANG L, LIAN C, WANG Y. Carboxylated carbon quantum dot-induced binary metal-organic framework nanosheet synthesis to boost the electrocatalytic performance[J]. Mater. Today, 2022, 54: 42-51
doi: 10.1016/j.mattod.2022.02.011
HONG Q, WANG Y M, WANG R R, CHEN Z L, YANG H Y, YU K, LIU Y, HUANG H, KANG Z H, MENEZES P W. In situ coupling of carbon dots with Co-ZIF nanoarrays enabling highly efficient oxygen evolution electrocatalysis[J]. Small, 2023, 19(31): 2206723
doi: 10.1002/smll.202206723
ZHANG Z Q, ZHANG Z, CHEN X B, WANG H B, LU H Y, SHI Z, FENG S H. Metal-organic framework-derived hollow nanocubes as stable noble metal-free electrocatalyst for water splitting at high current density[J]. CCS Chem., 2024, 6(5): 1324-1337
doi: 10.31635/ccschem.023.202303256
SUN D R, WONG L W, WONG H Y, LAI K H, YE L, XV X Y, LY T H, DENG Q M, ZHAO J. Direct visualization of atomic structure in multivariate metal-organic frameworks (MOFs) for guiding electrocatalysts design[J]. Angew. Chem.‒Int. Edit., 2023, 62(4): e202216008
doi: 10.1002/anie.202216008
LI Y X, ZHANG Z Q, XIE M G, LI C G, SHI Z, FENG S H. A facile templating fabrication of porous CoP nanoparticles towards electrocatalytic oxygen evolution[J]. Appl. Surf. Sci., 2022, 583: 152402
doi: 10.1016/j.apsusc.2021.152402
ZHANG Z Q, LI Y D, ZHANG Z, ZHENG H, LIU Y X, YAN Y X, LI C G, LU H Y, SHI Z, FENG S H. An electrochemical modification strategy to fabricate NiFeCuPt polymetallic carbon matrices on nickel foam as stable electrocatalysts for water splitting[J]. Chem. Sci., 2022, 13(30): 8876-8884
doi: 10.1039/D2SC02845J
LI H J W, LIN Y, DUAN J Y, WEN Q L, LIU Y W, ZHAI T Y. Stability of electrocatalytic OER: From principle to application[J]. Chem. Soc. Rev., 2024, 53(21): 10709-10740
doi: 10.1039/D3CS00010A
YUE K H, LU R H, GAO M B, SONG F, DAI Y, XIA C F, MEI B B, DONG H L, QI R J, ZHANG D L, ZHANG J W, WANG Z Y, HUANG F Q, XIA B Y, YAN Y. Polyoxometalated metal-organic framework superstructure for stable water oxidation[J]. Science, 2025, 388: 430-436
doi: 10.1126/science.ads1466
DING M L, JIANG H L. Improving water stability of metal-organic frameworks by a general surface hydrophobic polymerization[J]. CCS Chem., 2021, 3(8): 2740-2748
doi: 10.31635/ccschem.020.202000515
WU C, WANG X P, TANG Y, ZHONG H Y, ZHANG X, ZOU A Q, ZHU J L, DIAO C Z, XI S B, XUE J M, WU J G. Origin of surface reconstruction in lattice oxygen oxidation mechanism-based transition metal oxides: A spontaneous chemical process[J]. Angew. Chem.‒Int. Edit., 2023, 62(21): e202218599
doi: 10.1002/anie.202218599
HAI G T, TAO Z P, GAO H Y, ZHAO J, JIA D D, HUANG X B, CHEN X, XUE X D, FENG S H, WANG G. Targeted synthesis of covalently linked Ni-MOFs nanosheets/graphene for oxygen evolution reaction by computational screening of anchoring primers[J]. Nano Energy, 2021, 79: 105418
doi: 10.1016/j.nanoen.2020.105418
MIAO L C, JIA W Q, CAO X J, JIAO L F. Computational chemistry for water-splitting electrocatalysis[J]. Chem. Soc. Rev., 2024, 53(6): 2771
doi: 10.1039/D2CS01068B
CHEN L T, ZHANG X, CHEN A, YAO S, HU X, ZHOU Z. Targeted design of advanced electrocatalysts by machine learning[J]. Chin. J. Catal., 2022, 43(1): 11-32
doi: 10.1016/S1872-2067(21)63852-4
ZHANG Z, ZHANG Z Q, CHEN C L, XU R A, CHEN X B, LU H Y, SHI Z, HAN Y, FENG S H. Design and synthesis of electrocatalysts based on catalysis-unit engineering[J]. Adv. Mater., 2024, 36(36): 2403549
doi: 10.1002/adma.202403549
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
Wuxin Bai , Qianqian Zhou , Zhenjie Lu , Ye Song , Yongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
Qi Wang , Yuqing Liu , Jiefei Wang , Yuan-Yuan Ma , Jing Du , Zhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120
Ping LI , Geng TAN , Xin HUANG , Fuxing SUN , Jiangtao JIA , Guangshan ZHU , Jia LIU , Jiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020
Xiaogang YANG , Xinya ZHANG , Jing LI , Huilin WANG , Min LI , Xiaotian WEI , Xinci WU , Lufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
The corresponding electrical conductivities (unit: S·cm-1) are indicated in parentheses.