Citation: Xiaoyong ZHAI, Yao KOU, Pingru SU, Yu TANG. Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182 shu

Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection

Figures(4)

  • A lanthanide-based metal-organic framework Eu0.52Tb0.48-TCPP was synthesized under solvothermal conditions, where H4TCPP=4,4′, 4″,4‴-(pyrazine-2, 3, 5, 6-tetrayl)-tetrabenzoic acid. The structure and composition were characterized by powder X-ray diffraction, thermogravimetric analysis, infrared spectroscope, and elemental analysis. Eu0.52Tb0.48-TCPP showed excellent chemical stability, thermal stability, and good fluorescence sensing performance, which realized efficient and sensitive detection of 2, 4, 6-trinitrophenol (TNP). The detection limit was 0.49 μmol·L-1. In addition, the fluorescence sensing mechanism of TNP detected by Eu0.52Tb0.48-TCPP was explored and a portable fluorescence test papers and composite films were successfully prepared for the real-time and on-site inspection of TNP.
  • 加载中
    1. [1]

      YIN H Q, WANG X Y, YIN X B. Rotation restricted emission and antenna effect in single metal-organic frameworks[J]. J. Am. Chem. Soc., 2019, 141(38): 15166-15173  doi: 10.1021/jacs.9b06755

    2. [2]

      MOHAN B, KAMBOJ A, VIRENDER, SINGH K, PRIYANKA, SINGH G, POMBEIRO A J L, REN P. Metal-organic frameworks (MOFs) materials for pesticides, heavy metals, and drugs removal: Environmental safety[J]. Sep. Purif. Technol., 2023, 310: 123175  doi: 10.1016/j.seppur.2023.123175

    3. [3]

      DONG L L, LIU J, YANG H, FU Y P, LIU H L, CHEN X L, CUI H L, LIU L, WANG J J. Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology[J]. Chinese J. Inorg Chem., 2025, 41(4): 809-820  doi: 10.11862/CJIC.20240171

    4. [4]

      BAUZÁ A, MOOIBROEK T J, FRONTERA A. Towards design strategies for anion-π interactions in crystal engineering[J]. CrystEngComm, 2016, 18(1): 10-23  doi: 10.1039/C5CE01813G

    5. [5]

      CALVO R, ZHANG K, PASSERA A, KATAYEV D. Facile access to nitroarenes and nitroheteroarenes using N-nitrosaccharin[J]. Nat. Commun., 2019, 10(1): 3410  doi: 10.1038/s41467-019-11419-y

    6. [6]

      XU N, ZHANG Q H, ZHANG G A. A carbazole-functionalized metal-organic framework for efficient detection of antibiotics, pesticides, and nitroaromatic compounds[J]. Dalton Trans., 2019, 48(8): 2683-2691  doi: 10.1039/C8DT04558E

    7. [7]

      NAGARKAR S S, DESAI A V, GHOSH S K. Engineering metal- organic frameworks for aqueous phase 2, 4, 6-trinitrophenol (TNP) sensing[J]. CrystEngComm, 2016, 18(17): 2994-3007  doi: 10.1039/C6CE00244G

    8. [8]

      ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chem. Rev., 2012, 112(2): 673-674  doi: 10.1021/cr300014x

    9. [9]

      KIRCHON A, FEENG L, DRAKE H F, JOSEPH E A, ZHOU H C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials[J]. Chem. Soc. Rev., 2018, 47(23): 8611-8638  doi: 10.1039/C8CS00688A

    10. [10]

      XIA Q C, LI Z J, TAN C X, LIU Y, GONG W, CUI Y. Multivariate metal-organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions[J]. J. Am. Chem. Soc., 2017, 139(24): 8259-8266  doi: 10.1021/jacs.7b03113

    11. [11]

      WU Y P, XU G W, DONG W W, ZHAO J, LI D S, ZHANG J, BU X H. Anionic lanthanide MOFs as a platform for iron-selective sensing, systematic color tuning, and efficient nanoparticle catalysis[J]. Inorg. Chem., 2017, 56(3): 1402-1411  doi: 10.1021/acs.inorgchem.6b02476

    12. [12]

      HU Y L, DING M L, LIU X Q, SUN L B, JIANG H L. Rational synthesis of an exceptionally stable Zn􀃭 metal-organic framework for the highly selective and sensitive detection of picric acid[J]. Chem. Commun., 2016, 52(33): 5734-5737  doi: 10.1039/C6CC01597B

    13. [13]

      YUAN S, FENG L, WANG K C, PANG J D, BOSCH M, LOLLAR C, SUN Y J, QIN J S, YANG X Y, ZHANG P, WANG Q, ZOU L F, ZHANG Y M, ZHANG L L, FANG Y, LI J L, ZHOU H C. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Adv. Mater., 2018, 30(37): 1704303  doi: 10.1002/adma.201704303

    14. [14]

      DUAN J H, JIN W Q, KITAGAWA S. Water-resistant porous coordination polymers for gas separation[J]. Coord. Chem. Rev., 2017, 332: 48-74  doi: 10.1016/j.ccr.2016.11.004

    15. [15]

      YAN W, ZHANG C L, CHEN S G, HAN L J, ZHENG H. Two lanthanide metal-organic frameworks as remarkably selective and sensitive bifunctional luminescence sensor for metal ions and small organic molecules[J]. ACS Appl. Mater. Interfaces, 2017, 9(2): 1629-1634  doi: 10.1021/acsami.6b14563

    16. [16]

      YAN B. Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing[J]. Accounts Chem. Res., 2017, 50(11): 2789-2798  doi: 10.1021/acs.accounts.7b00387

    17. [17]

      WANG W Z, GONG N, YIN H, ZHANG B, GUO P Y, LIU B, WANG Y Y. Two stable terbium-organic frameworks based on predesigned functionalized ligands: Selective sensing of Fe3+ ions and C2H2/CH4 separation[J]. Inorg. Chem., 2019, 58(15): 10295-10303  doi: 10.1021/acs.inorgchem.9b01465

    18. [18]

      XU W F, CHEN H H, XIA Z Q, REN C T, HAN J, SUN W J, WEI Q, XIE G, CHEN S P. A robust Tb-MOF for ultrasensitive detection of trinitrophenol: Matched channel dimensions and strong host-guest interactions[J]. Inorg. Chem., 2019, 58(12): 8198-8207  doi: 10.1021/acs.inorgchem.9b01008

    19. [19]

      ZHANG X J, SU F Z, CHEN D M, PENG Y, GUO W Y, LIU C S, DU M. A water-stable Eu-based MOF as a dual-emission luminescent sensor for discriminative detection of nitroaromatic pollutants[J]. Dalton Trans., 2019, 48(5): 1843-1849  doi: 10.1039/C8DT04397C

    20. [20]

      WANG X Y, YAN P F, LI Y X, AN G H, YAO X, LI G M. Highly efficient white-light emission and UV-visible/NIR luminescence sensing of lanthanide metal-organic frameworks[J]. Cryst. Growth Des., 2017, 17(4): 2178-2185  doi: 10.1021/acs.cgd.7b00112

    21. [21]

      ZHAI X Y, MU X J, TAN G Y, LIANG L J, KOU Y, SU P R, YAN C H, TANG Y. Ag+-induced energy level splitting in Ln-MOFs achieves enhanced Eu3+ emission intensity[J]. Sci. China‒Chem., 2025, 68(3): 924-934

    22. [22]

      JIANG Y Y, SUN L B, DU J F, LIU Y C, SHI H Z, LIANG Z Q, LI J Y. Multifunctional zinc metal-organic framework based on designed H4TCPP ligand with aggregation-induced emission effect: CO2 adsorption, luminescence, and sensing property[J]. Cryst. Growth Des., 2017, 17(4): 2090-2096  doi: 10.1021/acs.cgd.7b00068

    23. [23]

      WU S Y, LIN Y N, LIU J W, SHI W, YANG G M, CHENG P. Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal-organic framework sensor[J]. Adv. Funct. Mater., 2018, 28(17): 1707169  doi: 10.1002/adfm.201707169

    24. [24]

      ZHAO Y F, ZENG H, ZHU X W, LU W G, LI D. Metal-organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications[J]. Chem. Soc. Rev., 2021, 50(7): 4484-4513  doi: 10.1039/D0CS00955E

    25. [25]

      ZHANG Y Q, BLATOV V A, ZHENG T R, YANG C H, QIAN L L, LI K, LI B L, WU B. A luminescent zinc􀃭 coordination polymer with unusual (3, 4, 4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: A versatile luminescent sensor[J]. Dalton Trans., 2018, 47(17): 6189-6198  doi: 10.1039/C7DT04682K

    26. [26]

      ZHAI X Y, KOU Y, LIANG L J, LIANG P Y, SU P R, TANG Y. AIE ligand-based luminescent Ln-MOFs for rapid and selective sensing of tetracycline[J]. Inorg. Chem., 2023, 62(45): 18533-18542  doi: 10.1021/acs.inorgchem.3c02754

    27. [27]

      JI G F, LIU J J, GAO X C, SUN W, WANG J Z, ZHAO S L, LIU Z L. A luminescent lanthanide MOF for selectively and ultra-high sensitively detecting Pb2+ ions in aqueous solution[J]. J. Mater. Chem. A, 2017, 5(21): 10200-10205  doi: 10.1039/C7TA02439H

    28. [28]

      HAN Z S, GUO Y F, LIANG R R, WANG K Y, YANG Y H, MAO Y, SUN T K, WANG M M, CARCIA Y, TAYLOR P R, SHI W, ZHOU H C. Regulating open metal sites in metal-organic frameworks to tame luminescence sensing[J]. CCS Chem., 2025, 7(5): 1396-1402  doi: 10.31635/ccschem.025.202404795

    29. [29]

      HAN Z S, WANG K Y, CHEN Y L, LI J N, TEAT S J, YANG S H, SHI W, CHENG P. A multicenter metal-organic framework for quantitative detection of multicomponent organic mixtures[J]. CCS Chem., 2022, 4(10): 3238-3245  doi: 10.31635/ccschem.022.202101642

    30. [30]

      HAN Z S, HUANG W H, CHENG P, SHI W. Functional guest in metal-organic frameworks[J]. Chin. J. Chem., 2025, 43(8): 956-966  doi: 10.1002/cjoc.202401056

  • 加载中
    1. [1]

      Bangdi GEXiaowei SONGZhiqiang LIANG . A bifunctional three-dimensional Eu-MOF fluorescent probe for highly sensitive detection of 2, 4, 6-trinitrophenol and tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2165-2174. doi: 10.11862/CJIC.20250190

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    4. [4]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    5. [5]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    12. [12]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    15. [15]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    16. [16]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    17. [17]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    19. [19]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    20. [20]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

Metrics
  • PDF Downloads(0)
  • Abstract views(25)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return