Citation: Kaimin WANG, Na HE, Shiyi LI, Xuling BAI, Weiqing SUN, Yanqing YE, Yulu MA. Synthesis, Hirshfeld surface analysis and properties of two Zn(Ⅱ)/Ni(Ⅱ) coordination polymers[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(1): 55-64. doi: 10.11862/CJIC.20250178 shu

Synthesis, Hirshfeld surface analysis and properties of two Zn(Ⅱ)/Ni(Ⅱ) coordination polymers

  • Corresponding author: Yulu MA, yuluma163@163.com
  • Received Date: 29 May 2025
    Revised Date: 22 September 2025

Figures(9)

  • Two coordination polymers with different properties were successfully constructed under solvothermal conditions using zinc perchlorate, nickel perchlorate, and the same mixed ligand composed of 2, 7-naphthalenedicarboxylic acid (H2NDA) and 1, 4-bis(1H-imidazol-1-yl)benzene (1, 4-DMB): {[Zn(NDA)(1, 4-DMB)0.5(H2O)]}n (Zn-CP) and {[Ni(NDA)(1, 4-DMB)(H2O)3]}n (Ni-CP). Single-crystal X-ray diffraction, thermogravimetric analysis, Hirshfeld surface analysis, and other characterization methods further explored the phase purity, thermal stability, and interaction in the crystal of the two complexes. The results show that the two coordination polymers have a 1D chain structure, and both of them are finally separated by abundant intermolecular hydrogen bonds and ππ stacking interactions form a 3D supramolecular structure. However, it is worth noting that when the two complexes are synthesized, except for the metal cations, the anions and other reagents and conditions are the same. Still, in Zn-CP, Zn2+ is in the center of the deformed tetrahedron with four coordinations, and the carboxyl groups in the NDA2- ligands are all involved in the coordination, which is a bidentate bridging ligand. The final structure of the coordination polymer is a 1D ladder-shaped chain. In Ni-CP, Ni2+ is in the center of the deformed octahedron with hexacoordination, but only one carboxyl group is involved in the coordination in the NDA2- ligand, which is a monodentate ligand end-group ligand, so the coordination polymer is only a 1D twisted trapezoidal chain. In addition, the solid-state fluorescence test results under 275 nm excitation showed that Zn-CP exhibited good fluorescence properties at 363 nm. Furthermore, the electrocatalytic performance test for nitrate reduction to ammonia indicated that Ni-CP exhibited a certain degree of electrocatalytic ability for nitrate reduction to ammonia.
  • 加载中
    1. [1]

      OSYPIUK D, BARTYZEL A, CRISTÓVÃO B. Coordination polymers of vanadium and selected metal ions with N, O-donor schiff base ligands-synthesis, crystal structure, and application[J]. Molecules, 2025, 30(5): 1104  doi: 10.3390/molecules30051104

    2. [2]

      WANG K M, ZHAO X, BAI X L, DONG Y Q, FAN R F, YU H M, TANG H J, MA Y L. A fluorescence sensor based on Cd(Ⅱ) coordination polymer for recognition of nitrofurantoin[J]. Chinese J. Inorg. Chem., 2023, 39(8): 1587-1596  doi: 10.11862/CJIC.2023.125

    3. [3]

      OMOTO K, RAPENNE G. Design of crystalline layered coordination polymers that respond to light and heat stimuli[J]. Dalton Trans., 2025, 54: 7179-7188  doi: 10.1039/D5DT00156K

    4. [4]

      KUMAR S, MUHAMMAD R, AMHAMED A, OH H. Unveiling the potential of ingenious copper-based metal-organic frameworks in gas storage and separation[J]. Coord. Chem. Rev., 2025, 522: 216230  doi: 10.1016/j.ccr.2024.216230

    5. [5]

      JIANG R Y, ZHENG S T, ZHANG L P, PEI L M, WANG J, LEI Z, ZHENG F, WANG W B, JIANG Y, WANG S M, YANG Q Y. Nanoporous copper-isoquinoline coordination polymer for high-efficiency ethane/ethylene separation[J]. ACS Appl. Nano Mater., 2025, 8(19): 10080-10086  doi: 10.1021/acsanm.5c01531

    6. [6]

      LIU Z N, XING C Y, SHAN Y F, MA M, WU S W, GE R X, XUE Q Z, TIAN J. Molecular engineering of 1D conjugated copper anilate coordination polymers for boosting electrocatalytic nitrate reduction to ammonia[J]. Chem. Sci., 2025, 16(16): 7010-7017  doi: 10.1039/D4SC08508F

    7. [7]

      MA Y L, YANG L P, BAI X L, WANG K M. Sensitive detection of organophosphorus pesticides in agricultural food products by a highly luminescent coordination polymer[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2025, 341: 126471  doi: 10.1016/j.saa.2025.126471

    8. [8]

      CHI Z M, CHU S Q, WANG B Q, ZHANG Z, LIU G H, WANG X L. Advances in metal complex-based colorimetric sensors[J]. Talanta, 2026, 297: 128591  doi: 10.1016/j.talanta.2025.128591

    9. [9]

      ZHONG B Q, LIU J L, LIU G C, ZHANG Z, CHEN Y Q, WANG X L. pH-directed polyoxometalate-based supramolecular framework for effectively electrochemical sensing IO3- from glycerol oxidation wastewater[J]. J. Mol. Struct., 2025, 1332: 141679

    10. [10]

      WU R, CHEN Y H, YU H J, XU H L, ZHONG S L. Coordination polymer nanospheres based on folic acid: Upconversion properties, cytotoxicity study and drug delivery[J]. Mater. Lett., 2023, 335: 133785  doi: 10.1016/j.matlet.2022.133785

    11. [11]

      LUO Y H, XUE C, ZHANG S X, ZHAO J, JIN X T, LIU M. Charge transfer-triggered reversible spin-state switching [J]. J. Mater. Chem. C, 2024, 12: 1693-1700  doi: 10.1039/D3TC03907B

    12. [12]

      LIU M, MA S H, DONG H, ZENG F L, JIN X T, LUO Y H. Rewritable paper based on layered metal-organic frameworks with NIR-triggered reversible color switching[J]. Adv. Opt. Mater., 2023, 11: 2300056  doi: 10.1002/adom.202300056

    13. [13]

      LIU M, LIU Q, JIN X T, ZOU Y C, LI D N, FENG P, LUO Y H. Removal of total chromium in wastewater via simultaneous photocatalysis and adsorption using calcium silicate hydrate-based composites[J]. J. Mater. Chem. A, 2023, 11: 24038-24046  doi: 10.1039/D3TA05384A

    14. [14]

      PAVLOV D I, RYADUN A A, FEDIN V P, POTAPOV A S. Zinc metal-organic coordination polymer with 4, 7-di(1, 2, 4-triazol-1-yl)-2, 1, 3-benzothiadiazole and 1, 4-naphthalene dicarboxylic acid: Luminescent properties and guest-host charge transfer[J]. J. Struct. Chem., 2024, 65: 2567-2578  doi: 10.1134/S0022476624120199

    15. [15]

      FU Y Y, CHEN J L, YANG F Y, LI J F, LIU Q Y, WANG J W, LIU J J. Two one-dimensional functional coordination polymers based on 1, 1′-bis(3-carboxybenzyl)-4, 4′-bipyridinium moiety[J]. Polyhedron, 2024, 255: 116983  doi: 10.1016/j.poly.2024.116983

    16. [16]

      CHEN Z L, YANG J, CHENG W W, HUANG J, YANG D, XUE Y S, WU X H. A novel coordination polymer based on 2, 6-naphthalenedicarboxylic acid: Synthesis, crystal structure and luminescence sensing[J]. Transit. Met. Chem., 2020, 45: 121-128  doi: 10.1007/s11243-019-00364-w

    17. [17]

      WEN M Y, FU L S, DONG G Y. Two Cd(Ⅱ)-based metal-organic frameworks as difunctional fluorescence sensors to detect enrofloxacin and Fe3+[J]. J. Solid State Chem., 2022, 315: 123483  doi: 10.1016/j.jssc.2022.123483

    18. [18]

      DENG N, CHEN L, BAI X L, WANG K M, HE N, YE Y Q, MA Y L. Synthesis, crystal structure and adsorption properties of a novel Co(Ⅱ) coordination polymer[J]. Inorg. Chem. Commun., 2025, 180: 115059  doi: 10.1016/j.inoche.2025.115059

    19. [19]

      SI G R, KONG X J, HE T, ZHAO J T, XIE L H, LI J R. Ammonia hydration in a Cu(Ⅱ)-pyrazolate framework for efficient trace capture[J]. Angew. Chem. ‒Int. Edit., 2025: e202507356

    20. [20]

      YANG Y, SUN Y T, WANG Y N, ZHANG X X, ZHANG W Y, HUANG Z F, YIN L C, HAN A L, LIU G. Self-triggering a locally alkaline microenvironment of Co4Fe6 for highly efficient neutral ammonia electrosynthesis[J]. J. Am. Chem. Soc., 2025, 147(10): 8893-8905  doi: 10.1021/jacs.5c00688

    21. [21]

      WANG M, MENG Y R, XU W J, SHEN T Y, WANG Y H, YU Q C, LIU C J, GU Y M, TIE Z X, FAN Z X, ZUO J L, SU J, JIN Z. Square-planar tetranuclear cluster-based high-symmetry coordination metal-organic polymers for efficient electrochemical nitrate reduction to ammonia[J]. J. Am. Chem. Soc., 2025, 147(21): 18327-18337  doi: 10.1021/jacs.5c06650

    22. [22]

      SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015, C71(1): 3-8

    23. [23]

      DOLOMANOV O V, BOURHIS L J, GILDER R J, HOWARDA J A K, PUSCHMANNA H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009, 42: 339-341  doi: 10.1107/S0021889808042726

    24. [24]

      CUI P P, LI X, CHEN Y L, CHENG Z L, GAO F Y, GUO X, YAN W N, DENG Y C. Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property[J]. Chinese J. Inorg. Chem., 2024, 40(11): 2221-2231  doi: 10.11862/CJIC.20240234

    25. [25]

      WANG J F, XU X, BIAN R N, DONG W K, DING Y J. Investigation on structurally different Cu(Ⅱ) and Ni(Ⅱ) complexes constructed from a novel pyridine-terminal salamo-like ligand[J]. Inorg. Chim. Acta, 2021, 516: 120095  doi: 10.1016/j.ica.2020.120095

  • 加载中
    1. [1]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    2. [2]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    7. [7]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Anqun LAIQiaoyu WUQingqing LIANGQiyong LIGuowen DONGYongjie DINGJia′nan CHENQing YANZhonghua PANWangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151

    11. [11]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Yucai Zhang Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

Metrics
  • PDF Downloads(1)
  • Abstract views(77)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return