Citation: Ruiyan CHEN, Yanping HE, Jian ZHANG. Synthesis and third-order nonlinear optical property of Ti4L6 cage-based metal-organic framework[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2149-2156. doi: 10.11862/CJIC.20250177 shu

Synthesis and third-order nonlinear optical property of Ti4L6 cage-based metal-organic framework

Figures(5)

  • Herein, we report the synthesis and third-order nonlinear optical (NLO) properties of a novel cage-based 2D metal-organic framework constructed from Ti4L6 (L4-=embonate) cage combined with Mg2+ and tris[4-(1H-imidazol-1-yl)phenyl]amine (tipa) ligand, whose molecular formula is (Me2CH2)2[Mg3(Ti4L6)(tipa)(H2O)12] (PTC-378). The Ti4L6 tetrahedral cages serve as robust building units, while the Mg2+ ions and tipa ligands provide structural stability and tunable optical properties. The resulting PTC-378 film exhibited intriguing third-order NLO property, which was systematically investigated using Z-scan techniques. Our results demonstrate that the synergistic interaction between Ti4L6 cages and π-conjugated ligands significantly enhances the NLO performance of the materials.
  • 加载中
    1. [1]

      YANG L, ZHANG P, CUI J, CUI X, XING H. The chemistry of metal-organic frameworks for multicomponent gas separation[J]. Angew. Chem.‒Int. Edit., 2024, 63(46): e202414503  doi: 10.1002/anie.202414503

    2. [2]

      ZHAO Y, YAMAUCHI Y. Mesoporous single-crystal metal-organic frameworks[J]. Nat. Chem., 2025, 17(2): 161-162  doi: 10.1038/s41557-024-01727-2

    3. [3]

      LI H Y, KONG X J, HAN S D, PANG J, HE T, WANG G M, BU X H. Metalation of metal-organic frameworks: Fundamentals and applications[J]. Chem. Soc. Rev., 2024, 53(11): 5626-5676  doi: 10.1039/D3CS00873H

    4. [4]

      DHAKSHINAMOORTHY A, LI Z, YANG S, GARCIA H. Metal-organic framework heterojunctions for photocatalysis[J]. Chem. Soc. Rev., 2024, 53(6): 3002-3035  doi: 10.1039/D3CS00205E

    5. [5]

      GAO F, WANG X K, CHEN W M, WANG W J, FAN W D, KANG Z X, WANG R M, GUO H L, YUE Q, YUAN D Q, SUN D F. Metal-organic frameworks for hydrogen isotopes separation[J]. Coord. Chem. Rev., 2024, 518: 216047  doi: 10.1016/j.ccr.2024.216047

    6. [6]

      HAMACHI T, INOUE M, FUKI M, HONDA T, YABUKI R, PARMAR B, MIYATA K, ONDA K, ITO T, KURASHIGE Y, KOBORI Y, YANAI N. Light-harvesting spin hyperpolarization of organic radicals in a metal-organic framework[J]. J. Am. Chem. Soc., 2025, 147(5): 4365-4374  doi: 10.1021/jacs.4c14916

    7. [7]

      CHENG S Q, LIU Y, SUN Y. Macrocycle-based metal-organic and covalent organic framework membranes[J]. Coord. Chem. Rev., 2025, 534: 216559  doi: 10.1016/j.ccr.2025.216559

    8. [8]

      ABÁNADES LÁZARO I, CHEN X, DING M, ESKANDARI A, FAIREN-JIMENEZ D, GIMÉNEZ-MARQUÉS M, GREF R, LIN W, LUO T, FORGAN R S. Metal-organic frameworks for biological applications[J]. Nat. Rev. Methods Primers, 2024, 4(1): 42  doi: 10.1038/s43586-024-00320-8

    9. [9]

      PARK S, LEE J, KIM B, JUNG C Y, BAE S E, KANG J, MOON D, PARK J. Radical-driven crystal-amorphous-crystal transition of a metal-organic framework[J]. J. Am. Chem. Soc., 2024, 146(13): 9293-9301  doi: 10.1021/jacs.4c01040

    10. [10]

      RAJASREE S S, FRY H C, GOSZTOLA D J, SAHA B, KRISHNAN R, DERIA P. Symmetry-breaking charge transfer in metal-organic frameworks[J]. J. Am. Chem. Soc., 2024, 146(8): 5543-5549  doi: 10.1021/jacs.3c13764

    11. [11]

      YUAN S, FENG L, WANG K C, PANG J D, BOSCH M, LOLLAR C, SUN Y J, QIN J S, YANG X Y, ZHANG P, WANG Q, ZOU L F, ZHANG Y M, ZHANG L L, FANG Y, LI J L, ZHOU H C. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Adv. Mater., 2018, 30(37): 1704303  doi: 10.1002/adma.201704303

    12. [12]

      THORARINSDOTTIR A E, HARRIS T D. Metal-organic framework magnets[J]. Chem. Rev., 2020, 120(16): 8716-8789  doi: 10.1021/acs.chemrev.9b00666

    13. [13]

      WANG W, CHEN Y C, BU X H, FENG P Y. Heterometallic aluminum metal-organic frameworks[J]. J. Am. Chem. Soc., 2025, 147(18): 15146-15156  doi: 10.1021/jacs.4c18251

    14. [14]

      HE Y P, YUAN L B, CHEN G H, LIN Q P, WANG F, ZHANG L, ZHANG J. Water-soluble and ultrastable Ti4L6 tetrahedron with coordination assembly function[J]. J. Am. Chem. Soc., 2017, 139(46): 16845-16851  doi: 10.1021/jacs.7b09463

    15. [15]

      CHEN G H, HE Y P, WANG Z R, LI Q H, MA Z Z, ZHANG J. Tunable third-order nonlinear optical effect via modifying Ti4(embonate)6 cage-based ionic pairs[J]. Inorg. Chem. Front., 2022, 9(9): 1984-1991  doi: 10.1039/D2QI00138A

    16. [16]

      HE Y P, CHEN G H, YUAN L B, ZHANG L, ZHANG J. Ti4(embonate)6 cage-ligand strategy on the construction of metal-organic frameworks with high stability and gas sorption properties[J]. Inorg. Chem., 2020, 59(2): 964-967  doi: 10.1021/acs.inorgchem.9b03075

    17. [17]

      CHEN G H, HE Y P, YU Y, LI Q H, ZHANG J. Homochiral design of titanium-organic cage for circularly polarized luminescence-based molecular detection[J]. Sci. China Chem., 2023, 66(9): 2558-2562  doi: 10.1007/s11426-023-1707-4

    18. [18]

      TENG Q, XIANG G, CHEN G H, CHEN S M, HE Y P, ZHANG J. Coordination assembly of tetrahedral Zr4(embonate)6 cages with Eu3+ ions[J]. Inorg. Chem., 2021, 60(23): 18178-18184  doi: 10.1021/acs.inorgchem.1c02817

    19. [19]

      MENG X, DING Q R, CHEN S M, HE Y P, ZHANG J. Enantioselective assembly of tetrahedral Zr4(embonate)6 cages in zeolitic frameworks for synergetic circularly polarized luminescence[J]. Inorg. Chem. Front., 2024, 11(19): 6486-6492  doi: 10.1039/D4QI01624F

    20. [20]

      CHEN R Y, HE Y P, CHEN G H, ZHANG J. Designing cage-supported cluster-organic framework for highly efficient optical limiting[J]. ACS Mater. Lett., 2022, 4(8): 1397-1401  doi: 10.1021/acsmaterialslett.2c00343

    21. [21]

      YUAN Y, ZHANG D H, LI Q H, CHEN S M, HE Y P, ZHANG J. Combining Ti4(embonate)6 anionic cages and π-conjugated coordination cations for highly effective optical limiting[J]. Chem. Commun., 2024, 60(66): 8748-8751  doi: 10.1039/D4CC02938K

    22. [22]

      HE Y P, CHEN G H, LI D J, LI Q H, ZHANG L, ZHANG J. Combining a titanium-organic cage and a hydrogen-bonded organic cage for highly effective third-order nonlinear optics[J]. Angew. Chem.‒Int. Edit., 2021, 60(6): 2920-2923  doi: 10.1002/anie.202013977

    23. [23]

      LI Y F, HE, Y P, LI Q H, ZHANG J. Integrated anionic zirconium-organic cage and cationic boron-imidazolate cage for synergetic optical limiting[J]. Angew. Chem.‒Int. Edit., 2024, 63(12): e202318806  doi: 10.1002/anie.202318806

    24. [24]

      LI J W, DONG W, LIU Y, LI Y, QIAO L Y, LIU G L, ZHANG H, WANG C, ZHENG H L, ZHAO J Q. Water-stable zero-dimensional hybrid zinc halide modulated by π-π interactions: Efficient blue light emission and third-order nonlinear optical response[J]. Inorg. Chem. Front., 2024, 11(23): 8431-8438  doi: 10.1039/D4QI02194K

    25. [25]

      WANG S T, LIU Y J, FENG C C, FANG W H, ZHANG J. The largest aluminum molecular rings: Phenol-thermal synthesis, photoluminescence, and optical limiting[J]. Aggregate, 2023, 4(2): e264  doi: 10.1002/agt2.264

    26. [26]

      CHEN S, FANG W H, ZHANG L, ZHANG J. Atomically precise multimetallic semiconductive nanoclusters with optical limiting effects[J]. Angew. Chem.‒Int. Edit., 2018, 57(35): 11252-11256  doi: 10.1002/anie.201804569

    27. [27]

      LIU Y J, CUI L M, FANG W H, ZHANG J. Design and synthesis of Al7Ni2 heterometallic clusters based on metal substitution and ligands protection strategies[J]. Chin. J. Chem., 2023, 41(5): 521-526  doi: 10.1002/cjoc.202200592

    28. [28]

      CHEN Y B, ZHANG C Y, LUO D, CHEN R Q, ZHANG J, CHEN S M, FANG W H. Host-guest chemistry and nonlinear optical behaviors of aluminum molecular rings[J]. Chin. J. Chem., 2024, 42(21): 2581-2588  doi: 10.1002/cjoc.202400423

    29. [29]

      FU H R, XU Z X, ZHANG J. Water-stable metal-organic frameworks for fast and high dichromate trapping via single-crystal-to-single-crystal ion exchange[J]. Chem. Mater., 2014, 27(1): 205-210

    30. [30]

      WANG S T, QI X, CHEN R Q, FANG W H, ZHANG J. Two solvent-dependent Al16 nanorings: Design, synthesis and nonlinear optical limiting behavior[J]. Inorg. Chem. Front., 2024, 11(2): 462-469  doi: 10.1039/D3QI02008H

    31. [31]

      ZHANG J F, XIANG Q, YUAN Z, YANG J Y, SONG Y L, ZHANG C. Two W/S/Cu-cluster-containing metal-organic frameworks fabricated by multidentate organic ligands: New topologies, strong NLO properties, and efficient luminescent detection[J]. Cryst. Growth Des., 2021, 21: 3225-3233  doi: 10.1021/acs.cgd.0c01580

    32. [32]

      ZHANG R, WANG B, WANG F, CHEN S M, ZHANG J. Syntheses of ferrocene-functionalized indium-based metal-organic frameworks for third order nonlinear optical application[J]. Inorg. Chem. Front., 2023, 10(1): 201-210  doi: 10.1039/D2QI01949C

    33. [33]

      CHEN J Q, ZHANG H X, WANG Z R, HONG Q L, ZHANG J. Ligand evolution on trigonal bipyramidal boron imidazolate cages for enhanced optical limiting[J]. Inorg. Chem. Front., 2023, 10(7): 2136-2144  doi: 10.1039/D2QI02742A

    34. [34]

      LI D J, LI Q H, WANG Z R, MA Z Z, GU Z G, ZHANG J. Interpenetrated metal-porphyrinic framework for enhanced nonlinear optical limiting[J]. J. Am. Chem. Soc., 2021, 143(41): 17162-17169  doi: 10.1021/jacs.1c07803

  • 加载中
    1. [1]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    2. [2]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    3. [3]

      Hongzhe GUOSen WANGLu YANGFucheng LIUJiongpeng ZHAOZhaoquan YAO . Highly selective acetylene capture by a pacs-type metal-organic framework constructed using metal-formate complexes as pore partition units. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2157-2164. doi: 10.11862/CJIC.20250179

    4. [4]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    5. [5]

      Xinnan XIEBoyu ZHANGJianxun YANGYi ZHONGYounis OsamaJianxiao YANGXinchun YANG . Ultrafine platinum clusters achieved by metal-organic framework derived cobalt nanoparticle/porous carbon: Remarkable catalytic performance in dehydrogenation of ammonia borane. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2095-2102. doi: 10.11862/CJIC.20250025

    6. [6]

      Shanqing YANGLulu WANGQiang ZHANGJiajia LIYilong LITongliang HU . A propane-selective metal-organic framework for inverse selective adsorption propane/propylene separation. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2138-2148. doi: 10.11862/CJIC.20250154

    7. [7]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    8. [8]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    12. [12]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    13. [13]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    14. [14]

      Yingyue ZHANGLiuqing KANGYating YANGXiaofen GUANWenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100

    15. [15]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    16. [16]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    17. [17]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    18. [18]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    19. [19]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    20. [20]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

Metrics
  • PDF Downloads(0)
  • Abstract views(27)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return