Advances in selective hydrogenation of α, β-unsaturated aldehydes/ketones catalyzed by metal-organic frameworks and their derivatives: A review
- Corresponding author: Rongping ZHOU, rongg106@163.com Chao CHEN, chaochen@ncu.edu.cn
Citation:
Jiaxuan YANG, Chenfa DENG, Jingyang LIU, Chenzexi XU, Hongxin CHEN, Yahui ZHU, Ying LI, Shuhua WANG, Rongping ZHOU, Chao CHEN. Advances in selective hydrogenation of α, β-unsaturated aldehydes/ketones catalyzed by metal-organic frameworks and their derivatives: A review[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(10): 1973-2010.
doi:
10.11862/CJIC.20250175
HU Z, SHI S L, WANG L, CHEN S J, YOU Y S, WANG S H, CHEN C. MOF-derived AgCo alloy nanoparticle protected by mesoporous carbon as chemoselective catalyst for hydrogenation of citral[J]. Appl. Surf. Sci., 2020, 528: 146992
doi: 10.1016/j.apsusc.2020.146992
IDE M S, HAO B, NEUROCK M, DAVIS R J. Mechanistic insights on the hydrogenation of α, β-unsaturated ketones and aldehydes to unsaturated alcohols over metal catalysts[J]. ACS Catal., 2012, 2(4): 671-683
doi: 10.1021/cs200567z
LIANG Y, TANG Q, LIU L, WANG D S, DONG J X. Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes[J]. Appl. Catal. B‒Environ. Energy, 2023, 333: 122783
doi: 10.1016/j.apcatb.2023.122783
NIDHI G, HARI P S, PARDEEP D, BASKER S. Methanol as a hydrogen source: Room-temperature highly-selective transfer hydrogenation of α, β-unsaturated ketones[J]. Chem. Commun., 2022, 58(71): 9930-9933
doi: 10.1039/D2CC03597A
WANG K, NIU S S, TANG W J, XUE D, XIAO J L, LI H F, WANG C. Ru-catalyzed asymmetric hydrogenation of α, β-unsaturated ketones via a hydrogenation/isomerization cascade[J]. Chem. Commun., 2024, 60(32): 4338-4341
doi: 10.1039/D4CC00356J
CUI H S, LIAO X Q, REN Y F, ZHOU Y, XIAO J, DENG R J, LV Y, LIU H J, LIU P L, YANG H. Highly selective transfer hydrogenation of α, β-unsaturated aldehydes by frustrated Lewis pairs (FLPs) on oxygen-defect-rich Co3O4@NC[J]. J. Catal., 2023, 428: 115126
doi: 10.1016/j.jcat.2023.115126
CUI H S, ZHONG L H, LV Y, HAO F, LIU P L, XIONG W, XIONG S F, LIU H J, LUO H A. A facile synthesis of in-situ formed amorphous zirconia catalysts for efficient transfer hydrogenation of unsaturated aldehydes[J]. Fuel, 2022, 317: 123551
doi: 10.1016/j.fuel.2022.123551
CHEN J W, XIA Y M, LING Y X, LIU X H, LI S Y, YIN X, ZHANG L P, LIANG M H, YAN Y M, ZHENG Q, CHEN W X, GUO Y J, YUAN E H, HU G F, ZHOU X L, WANG L Y. Zn single-atom catalysts enable the catalytic transfer hydrogenation of α, β-unsaturated aldehydes[J]. Nano Lett., 2024, 24(17): 5197-5205
doi: 10.1021/acs.nanolett.4c00512
DENG M Y, WANG D S, LI Y D. Rational design of catalysts for heterogeneous selective hydrogenation of unsaturated aldehydes/ketones: From nanoparticles to single atoms[J]. Appl. Catal. A‒Gen., 2023, 666: 119423
doi: 10.1016/j.apcata.2023.119423
BONITA Y, JAIN V, GENG F, O′CONNELL T P, RAMOS N X, RAI N, HICKS J C. Hydrogenation of cinnamaldehyde to cinnamyl alcohol with metal phosphides: Catalytic consequences of product and pyridine doping[J]. Appl. Catal. B‒Environ. Energy, 2020, 277: 119272
doi: 10.1016/j.apcatb.2020.119272
ZHANG X, HAN M M, LIU G Q, WANG G Z, ZHANG Y X, ZHANG H M, ZHAO H J. Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions[J]. Appl. Catal. B‒Environ. Energy, 2019, 244: 899-908
doi: 10.1016/j.apcatb.2018.12.025
ZHOU Y Y, CHEN C, LI Q L, LIU Y B, WEI T, LIU Y Z, ZENG Z B, BRADSHAW D, ZHANG B, HUO J. Precise control of selective hydrogenation of α, β-unsaturated aldehydes in water mediated by ammonia borane[J]. Appl. Catal. B‒Environ. Energy, 2022, 311: 121348
doi: 10.1016/j.apcatb.2022.121348
CHENG S B, LEI Q, DENG C, LIANG L L, CHEN Y, MENG H W, LEI W X, CHEN H L. Mild and selective transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over Cu/ZnO/Al2O3 with methanediol as the hydrogen donor[J]. Green Chem., 2024, 26(12): 7132-7139
doi: 10.1039/D4GC00160E
ZHU Y H, ZHANG B Z, SHI S L, BO Z T, YUAN M W, XU Y, XIAO W M, WANG S H, CHEN C. Targeted electron transfer effect of enzyme-like Co-NX catalysts for enhanced C=O hydrogenation[J]. Chem. Eng. J., 2024, 488: 151199
doi: 10.1016/j.cej.2024.151199
YAO W, CHEN J M, WANG Y J, FANG R Q, QIN Z, YANG X F, CHEN L Y, LI Y W. Nitrogen-doped carbon composites with ordered macropores and hollow walls[J]. Angew. Chem. ‒Int. Edit., 2021, 60(44): 23729-23734
doi: 10.1002/anie.202108396
CAI J N, LIU Y Y, SUN Z C, WANG Y, WANG A J. Solvent effect on the catalytic performance of cinnamaldehyde hydrogenation over Pt/MIL-100(Fe)[J]. Chem. J. Chinese Universities, 2024, 45(2): 20230442
WANG Z W, KANG Y Y, SHI Y Z, LIU C, LIU Y N, LIU J, BI J H, WU L. Selective coordination activation regulating the selectivity for photocatalytic hydrogenation of α, β-unsaturated aldehyde over Pd/MIL-100(FeaCub)[J]. Appl. Catal. B‒Environ. Energy, 2024, 340: 123162
doi: 10.1016/j.apcatb.2023.123162
ZHOU P, LI L B, MOSALI V S S, CHEN Y, LUAN P, GU Q F, TURNER D R, HUANG L, ZHANG J. Electrochemical hydrogenation of furfural in aqueous acetic acid media with enhanced 2-methylfuran selectivity using CuPd bimetallic catalysts[J]. Angew. Chem. ‒Int. Edit., 2022, 61(13): e202117809
doi: 10.1002/anie.202117809
WANG T J, XIN Y, CHEN B F, ZHANG B, LUAN S, DONG M H, WU Y X, CHEN X M, LIU Y, LIU H Z, HAN B X. Selective hydrodeoxygenation of α, β-unsaturated carbonyl compounds to alkenes[J]. Nat. Commun., 2024, 15(1): 2166
doi: 10.1038/s41467-024-46383-9
ZHOU S J, YANG Y S, SHEN T Y, YIN P, WANG L, REN Z, ZHENG L R, WANG B, YAN H, WEI M. Highly selective hydrogenation of unsaturated aldehydes in aqueous phase[J]. ACS Appl. Mater. Interfaces, 2024, 16(11): 13685-13696
doi: 10.1021/acsami.3c17806
VALEKAR A H, LEE M, YOON J W, KWAK J, HONG D Y, OH K R, CHA G Y, KWON Y U, JUNG J, CHANG J S, HWANG Y K. Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr-MOFs: Exploring the role of metal node coordination and modification[J]. ACS Catal., 2020, 10(6): 3720-3732
doi: 10.1021/acscatal.9b05085
ZAHID M, ISMAIL A, SOHAIL M, ZHU Y J. Improving selective hydrogenation of carbonyls bond in α, β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH2[J]. J. Colloid Interface Sci., 2022, 628(Part B): 141-152
LV Y, HAN M M, GONG W B, WANG D D, CHEN C, WANG G Z, ZHANG H M, ZHAO H J. Fe-Co alloyed nanoparticles catalyzing efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water[J]. Angew. Chem. ‒Int. Edit., 2020, 59(52): 23521-23526
doi: 10.1002/anie.202009913
LIU Y J, ZHANG D H, LI X C, DENG S J, ZHAO D, ZHANG N, CHEN C. Construction of highly-dispersed and composition-adjustable CoxN in stable Co@CoxN@C nanocomposite catalysts via a dual-ligand-MOF strategy for the selective hydrogenation of citral[J]. Appl. Surf. Sci., 2020, 505: 144387
doi: 10.1016/j.apsusc.2019.144387
TIAN Z, CHEN D L, HE T, YANG P Y, WANG F F, ZHONG Y J, ZHU W D. Theoretical evidence on the confinement effect of Pt@UiO-66-NH2 for cinnamaldehyde hydrogenation[J]. J. Phys. Chem. C, 2019, 123(36): 22114-22122
doi: 10.1021/acs.jpcc.9b02547
CUI H S, LIU S H, LV Y, WU S T, WANG L P, HAO F, LIU P L, XIONG W, LUO H A. Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core-shell MOFs nanoreactor: Identification of the formed metal-N as the structure of an active site[J]. J. Catal., 2020, 381: 468-481
doi: 10.1016/j.jcat.2019.11.024
LIU X M, CHENG S J, LONG J L, ZHANG W, LIU X H, WEI D P. MOFs-derived Co@CN bi-functional catalysts for selective transfer hydrogenation of α, β-unsaturated aldehydes without use of base additives[J]. Mater. Chem. Front., 2017, 1(10): 2005-2012
doi: 10.1039/C7QM00189D
KANG Y Y, WANG Z W, SHI Y Z, GUO B B, WU L. Synthesis of aluminum doped MIL-100(Fe) compounds for the one-pot photocatalytic conversion of cinnamaldehyde and benzyl alcohol to the corresponding alcohol and aldehyde under anaerobic conditions[J]. J. Catal., 2022, 406: 184-192
doi: 10.1016/j.jcat.2022.01.010
LUNEAU M, LIM J S, PATEL D A, SYKES E C H, FRIEND C M, SAUTET P. Guidelines to achieving high selectivity for the hydrogenation of α, β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: A review[J]. Chem. Rev., 2020, 120(23): 12834-12872
doi: 10.1021/acs.chemrev.0c00582
ZHANG J, GAO M T, WANG R Y, LI X C, WANG J, LI S Y, GAO K M, LI J, WANG Y W, ZHENG Z F. Bifunctional role of oxygen vacancy in LDH supported Au nanoparticles catalyst for selective photocatalytic hydrogenation of cinnamaldehyde[J]. Fuel, 2024, 365: 131235
doi: 10.1016/j.fuel.2024.131235
KENNEDY G, MELAET G, HAN H L, RALSTON W T, SOMORJAI G A. In situ spectroscopic investigation into the active sites for crotonaldehyde hydrogenation at the Pt nanoparticle-Co3O4 interface[J]. ACS Catal., 2016, 6(10): 7140-7147
doi: 10.1021/acscatal.6b01640
KENNEDY G, BAKER L R, SOMORJAI G A. Selective amplification of C=O bond hydrogenation on Pt/TiO2: Catalytic reaction and sum-frequency generation vibrational spectroscopy studies of crotonaldehyde hydrogenation[J]. Angew. Chem. ‒Int. Edit., 2014, 53(13): 3405-3408
doi: 10.1002/anie.201400081
LO W S, CHOU L Y, YOUNG A P, REN C H, GOH T W, WILLIAMS B P, LI Y, CHEN S Y, ISMAIL M N, HUANG W Y, TSUNG C K. Probing the interface between encapsulated nanoparticles and metal-organic frameworks for catalytic selectivity control[J]. Chem. Mater., 2021, 33(6): 1946-1953
doi: 10.1021/acs.chemmater.0c03007
YUAN Q Q, ZHANG D M, VAN HAANDEL L, YE F Y, XUE T, HENSEN E J M, GUAN Y J. Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs[J]. J. Mol. Catal. A‒Chem., 2015, 406: 58-64
doi: 10.1016/j.molcata.2015.05.015
ZHANG N, SHAO Q, WANG P T, ZHU X, HUANG X Q. Porous Pt-Ni nanowires within in situ generated metal-organic frameworks for highly chemoselective cinnamaldehyde hydrogenation[J]. Small, 2018, 14(19): e1704318
doi: 10.1002/smll.201704318
LIU Q L, LIU Q, CHEN Y R, LI Y L, SU H, LIU Q H, LI G Q. Ir nanoclusters confined within hollow MIL-101(Fe) for selective hydrogenation of α, β-unsaturated aldehyde[J]. Chin. Chem. Lett., 2022, 33(1): 374-377
doi: 10.1016/j.cclet.2021.06.047
ZHANG W L, SHI W X, JI W L, WU H B, GU Z D, WANG P, LI X H, QIN P S, ZHANG J, FAN Y, WU T Y, FU Y, ZHANG W N, HUO F W. Microenvironment of MOF channel coordination with Pt NPs for selective hydrogenation of unsaturated aldehydes[J]. ACS Catal., 2020, 10(10): 5805-5813
doi: 10.1021/acscatal.0c00682
LAN X, WANG T. Highly selective catalysts for the hydrogenation of unsaturated aldehydes: A review[J]. ACS Catal., 2020, 10(4): 2764-2790
doi: 10.1021/acscatal.9b04331
PLESSERS E, DE VOS D E, ROEFFAERS M B J. Chemoselective reduction of α, β-unsaturated carbonyl compounds with UiO-66 materials[J]. J. Catal., 2016, 340: 136-143
doi: 10.1016/j.jcat.2016.05.013
UMEMURA A, DIRING S, FURUKAWA S, UEHARA H, TSURUOKA T, KITAGAWA S. Morphology design of porous coordination polymer crystals by coordination modulation[J]. J. Am. Chem. Soc., 2011, 133(39): 15506-15513
doi: 10.1021/ja204233q
SHI Y X, ZHU B B, GUO X T, LI W T, MA W Z, WU X Y, PANG H. MOF-derived metal sulfides for electrochemical energy applications[J]. Energy Storage Mater., 2022, 51: 840-872
doi: 10.1016/j.ensm.2022.07.027
CUI H S, ZHONG L H, LIAO X Q, HAO F, XIONG W, LIU H J, LUO H, LIU P L, LV Y. Highly efficient chemoselective hydrogenation of unsaturated aldehydes catalyzed by hydrophobically modified core-shell defective ZIFs: Frustrated Lewis pair catalysis[J]. J. Catal., 2023, 420: 23-43
doi: 10.1016/j.jcat.2023.02.012
LIU Q L, LI Y L, FAN Y A, SU C Y, LI G Q. Chemoselective hydrogenation of α, β-unsaturated aldehydes over Rh nanoclusters confined in a metal-organic framework[J]. J. Mater. Chem. A, 2020, 8(22): 11442-11447
doi: 10.1039/D0TA01845G
LIU H L, LI Z, LI Y W. Chemoselective hydrogenation of cinnamaldehyde over a Pt-Lewis acid collaborative catalyst under ambient conditions[J]. Ind. Eng. Chem. Res., 2015, 54(5): 1487-1497
doi: 10.1021/ie504357r
BAKURU V R, KALIDINDI S B. Synergistic hydrogenation over palladium through the assembly of MIL-101(Fe) MOF over palladium nanocubes[J]. Chem. ‒Eur. J., 2017, 23(65): 16456-16459
doi: 10.1002/chem.201704119
ZHAO M T, YUAN K, WANG Y, LI G D, GUO J, GU L, HU W P, ZHAO H J, TANG Z Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions[J]. Nature, 2016, 539(7627): 76-80
doi: 10.1038/nature19763
LAN X C, XUE K Z, WANG T F. Combined synergetic and steric effects for highly selective hydrogenation of unsaturated aldehyde[J]. J. Catal., 2019, 372: 49-60
doi: 10.1016/j.jcat.2019.02.022
SHI Y Z, WU T K, WANG Z W, LIU C, BI J H, WU L. Photocatalytic precise hydrogenation of furfural over ultrathin Pt/NiMg-MOF-74 nanosheets: Synergistic effect of surface optimized NiⅡ sites and Pt clusters[J]. Appl. Surf. Sci., 2023, 616: 156553
doi: 10.1016/j.apsusc.2023.156553
LI Y, LO W S, ZHANG F R, SI X M, CHOU L Y, LIU X Y, WILLIAMS B P, LI Y H, JUNG S H, HSU Y S, LIAO F S, SHIEH F K, ISMAIL M N, HUANG W Y, TSUNG C K. Creating an aligned interface between nanoparticles and MOFs by concurrent replacement of capping agents[J]. J. Am. Chem. Soc., 2021, 143(13): 5182-5190
doi: 10.1021/jacs.1c01357
STEPHENSON C J, WHITFORD C L, STAIR P C, FARHA O K, HUPP J T. Chemoselective hydrogenation of crotonaldehyde catalyzed by an Au@ZIF-8 composite[J]. Chemcatchem, 2016, 8(4): 855-860
doi: 10.1002/cctc.201501171
LAN X C, HUANG N, WANG J F, WANG T F. Geometric effect in the highly selective hydrogenation of 3-methylcrotonaldehyde over Pt@ZIF-8 core-shell catalysts[J]. Catal. Sci. Technol., 2017, 7(12): 2601-2608
doi: 10.1039/C7CY00353F
YANG L X, WU H Q, GAO H Y, LI J Q, TAO Y, YIN W H, LUO F. Hybrid catalyst of a metal-organic framework, metal nanoparticles, and oxide that enables strong steric constraint and metal-support interaction for the highly effective and selective hydrogenation of cinnamaldehyde[J]. Inorg. Chem., 2018, 57(20): 12461-12465
doi: 10.1021/acs.inorgchem.8b01922
NAGENDIRAN A, PASCANU V, BERMEJO GOMEZ A, GONZALEZ MIERA G, TAI C W, VERHO O, MARTIN-MATUTE B, BACKVALL J E. Mild and selective catalytic hydrogenation of the C=C bond in α, β-unsaturated carbonyl compounds using supported palladium nanoparticles[J]. Chem. ‒Eur. J., 2016, 22(21): 7184-7189
doi: 10.1002/chem.201600878
LONG Y, SONG S Y, LI J, WU L L, WANG Q S, LIU Y, JIN R C, ZHANG H J. Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect[J]. ACS Catal., 2018, 8(9): 8506-8512
doi: 10.1021/acscatal.8b01851
GUO Z Y, XIAO C X, MALIGAL-GANESH R V, ZHOU L, GOH T W, LI X L, TESFAGABER D, THIEL A, HUANG W Y. Pt nanoclusters confined within metal organic framework cavities for chemoselective cinnamaldehyde hydrogenation[J]. ACS Catal., 2014, 4(5): 1340-1348
doi: 10.1021/cs400982n
ZHOU A W, DOU Y B, ZHOU J, LI J R. Rational localization of metal nanoparticles in yolk-shell MOFs for enhancing catalytic performance in selective hydrogenation of cinnamaldehyde[J]. ChemSusChem, 2020, 13(1): 205-211
doi: 10.1002/cssc.201902272
XU T T, SUN K, GAO D W, LI C C, HU X, CHEN G Z. Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions[J]. Chem. Commun., 2019, 55(53): 7651-7654
doi: 10.1039/C9CC02727K
CHEN B, YANG X, XU Y N, HU S Y, ZENG X L, LIU Y P, TAN K B, HUANG J L, ZHAN G W. Semi-hydrogenation of α, β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al2O3 to Al-TCPP[J]. Nanoscale, 2022, 14(42): 15749-15759
doi: 10.1039/D2NR04474A
YANG Q P, GAO D W, LI C S, WANG S, HU X, ZHENG G X, CHEN G Z. Highly dispersed Pt on partial deligandation of Ce-MOFs for furfural selective hydrogenation[J]. Appl. Catal. B‒Environ. Energy, 2023, 328: 122458
doi: 10.1016/j.apcatb.2023.122458
NING L M, LIAO S Y, DONG C Q, ZHANG M T, GU W, LIU X. Rare earth oxide anchored platinum catalytic site coated zeolitic imidazolate frameworks toward enhancing selective hydrogenation[J]. ACS Appl. Mater. Interfaces, 2020, 12(6): 7198-7205
doi: 10.1021/acsami.9b19867
XUE K Z, LAN X C, WANG J F, WANG T F. Synthesis of Pt@MAF-6 as a steric effect catalyst for selective hydrogenation of cinnamaldehyde[J]. Catal. Lett., 2020, 150(11): 3234-3242
doi: 10.1007/s10562-020-03212-0
LIU H L, CHANG L N, CHEN L Y, LI Y W. Nanocomposites of platinum/metal-organic frameworks coated with metal-organic frameworks with remarkably enhanced chemoselectivity for cinnamaldehyde hydrogenation[J]. Chemcatchem, 2016, 8(5): 946-951
doi: 10.1002/cctc.201501256
YUAN K, SONG T Q, WANG D W, ZHANG X T, GAO X, ZOU Y, DONG H L, TANG Z Y, HU W P. Effective and selective catalysts for cinnamaldehyde hydrogenation: Hydrophobic hybrids of metal- organic frameworks, metal nanoparticles, and micro- and mesoporous polymers[J]. Angew. Chem. ‒Int. Edit., 2018, 57(20): 5708-5713
doi: 10.1002/anie.201801289
GUO Q Y, WANG Z, FENG X, FAN Y, LIN W. Generation and stabilization of a dinickel catalyst in a metal-organic framework for selective hydrogenation reactions[J]. Angew. Chem. ‒Int. Edit., 2023, 62(35): e202306905
doi: 10.1002/anie.202306905
YANGCHENG R X, LI J W, HE J D, ZHENG Y X, YU H J, CHEN C L, WANG J J. Carboxyl-decorated UiO-66 supporting Pd nanoparticles for efficient room-temperature hydrodeoxygenation of lignin derivatives[J]. Small, 2024: e2309821
GONG W B, LIN Y, CHEN C, AL-MAMUN M, LU H S, WANG G Z, ZHANG H M, ZHAO H J. Nitrogen-doped carbon nanotube confined Co-Nx sites for selective hydrogenation of biomass-derived compounds[J]. Adv. Mater., 2019, 31(11): 1808341
doi: 10.1002/adma.201808341
ZHAO J B, LI X M, ZHANG M, XU Z, QIN X M, LIU Y F, HAN L F, LI G. Enhancing the catalytic performance of Co-N-C derived from ZIF-67 by mesoporous silica encapsulation for chemoselective hydrogenation of furfural[J]. Nanoscale, 2023, 15(9): 4612-4619
doi: 10.1039/D2NR05831F
CHEN H R, SHEN K, TAN Y P, LI Y W. Multishell hollow metal/ nitrogen/carbon dodecahedrons with precisely controlled architectures and synergistically enhanced catalytic properties[J]. ACS Nano, 2019, 13(7): 7800-7810
doi: 10.1021/acsnano.9b01953
XU J Y, HAN X Y, ZHU L H, WANG W Z, RUAN L N, YANG Z Q, YE H Q, CHEN B H. Revealing the intrinsic relationship between nano/electronic structure of CuCo/NC (NC derived from ZIF-67) and their catalytic performance for furfural selective hydrogenation[J]. J. Catal., 2025, 447: 116140
doi: 10.1016/j.jcat.2025.116140
ZHAO H H, SONG H L, CHOU L J. Nickel nanoparticles supported on MOF-5: Synthesis and catalytic hydrogenation properties[J]. Inorg. Chem. Commun., 2012, 15: 261-265
doi: 10.1016/j.inoche.2011.10.040
YE H S, ZHAO H Y, JIANG Y Y, LIU H L, HOU Z Y. Catalytic transfer hydrogenation of the C=O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles[J]. ACS Appl. Nano Mater., 2020, 3(12): 12260-12268
doi: 10.1021/acsanm.0c02735
ZHOU Y Y, LI Z H, LIU Y B, HUO J, CHEN C, LI Q L, NIU S Y, WANG S Y. Regulating hydrogenation chemoselectivity of α, β-unsaturated aldehydes by combination of transfer and catalytic hydrogenation[J]. ChemSusChem, 2020, 13(7): 1746-1750
doi: 10.1002/cssc.201902629
DONG S H, LIU Z, LIU R H, CHEN L M, CHEN J Z, XU Y S. Visible-light-induced catalytic transfer hydrogenation of aromatic aldehydes by palladium immobilized on amine-functionalized iron-based metal-organic frameworks[J]. ACS Appl. Nano Mater., 2018, 1(8): 4247-4257
doi: 10.1021/acsanm.8b01039
ZHONG L H, LIAO X Q, HUANG H S, LUO H, LV Y, LIU P L. B, N codoped defective reduced graphene oxide as a highly efficient frustrated Lewis pairs catalyst for the selective hydrogenation of α, β-unsaturated aldehydes to unsaturated alcohols[J]. J. Am. Chem. Soc., 2025, 147(4): 3840-3854
doi: 10.1021/jacs.4c17103
HAN Y W, YE L, GONG T J, LU X B, FU Y. Porous composite- mediated bimetallic cluster POMs/Zr-MOF for catalytic transfer hydrogenation of biomass-derived aldehydes and ketones[J]. Adv. Funct. Mater., 2024, 34(19): 2315044
doi: 10.1002/adfm.202315044
ZHANG M J, YOUNG D J, MA J L, SHAO G Q. Copper pyrimidine-2-thiolate cluster-based polymers as bifunctional visible-light-photocatalysts for chemoselective transfer hydrogenation of α, β- unsaturated carbonyls[J]. RSC Adv., 2021, 11(25): 14899-14904
doi: 10.1039/D1RA01102B
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
Wei GUO , Zhuoyi GUO , Xiaoxin LI , Wei ZHANG , Juanzhi YAN , Tingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097
Hua Liu , Jian Zhao , Qi Li , Xiang-Yu Zhang , Zhi-Wei Zheng , Kun Huang , Da-Bin Qin , Bin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593
Jinyuan Cui , Tingting Yang , Teng Xu , Jin Lin , Kunlong Liu , Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438
Danfeng Zhao , Jing Lin , Rushuo Li , Liang Chu , Zhaokun Wang , Xiubing Huang , Ge Wang . Constructing frustrated Lewis pairs on porous Ce-based metal-organic frameworks with improved dicyclopentadiene hydrogenation activity. Chinese Chemical Letters, 2025, 36(7): 110172-. doi: 10.1016/j.cclet.2024.110172
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Bofei JIA , Zhihao LIU , Zongyuan GAO , Shuai ZHOU , Mengxiang WU , Qian ZHANG , Xiamei ZHANG , Shuzhong CHEN , Xiaohan YANG , Yahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Shanqing YANG , Lulu WANG , Qiang ZHANG , Jiajia LI , Yilong LI , Tongliang HU . A propane-selective metal-organic framework for inverse selective adsorption propane/propylene separation. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2138-2148. doi: 10.11862/CJIC.20250154
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Minghui Zhang , Na Zhang , Qian Zhao , Chao Wang , Alexander Steiner , Jianliang Xiao , Weijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081
Hongzhe GUO , Sen WANG , Lu YANG , Fucheng LIU , Jiongpeng ZHAO , Zhaoquan YAO . Highly selective acetylene capture by a pacs-type metal-organic framework constructed using metal-formate complexes as pore partition units. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2157-2164. doi: 10.11862/CJIC.20250179
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Route Ⅰ: conversion of UALs into UOLs with AB in an open autoclave; Route Ⅱ: conversion of UALs into SALs in an autoclave with inner lining for hydrogen production from AB decomposition by Pd/MOL and outer lining for hydrogenation of UALs catalyzed by Pd/MOL; Route Ⅲ: complete hydrogenation of UALs with AB and Pd/MOL to SOLs in a closed autoclave.