Citation: Jiaxuan YANG, Chenfa DENG, Jingyang LIU, Chenzexi XU, Hongxin CHEN, Yahui ZHU, Ying LI, Shuhua WANG, Rongping ZHOU, Chao CHEN. Advances in selective hydrogenation of α, β-unsaturated aldehydes/ketones catalyzed by metal-organic frameworks and their derivatives: A review[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 1973-2010. doi: 10.11862/CJIC.20250175 shu

Advances in selective hydrogenation of α, β-unsaturated aldehydes/ketones catalyzed by metal-organic frameworks and their derivatives: A review

Figures(24)

  • The selective hydrogenation of α, β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule. This approach serves as a critical strategy for the directional synthesis of high-value molecules. However, achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds in α, β-unsaturated systems. Consequently, constructing precisely targeted catalytic systems is essential to overcome these limitations, offering both fundamental scientific significance and industrial application potential. Metal-organic frameworks (MOFs) and their derivatives have emerged as innovative platforms for designing such systems, owing to their programmable topology, tunable pore microenvironments, spatially controllable active sites, and modifiable electronic structures. This review systematically summarizes the research progress of MOF-based catalysts for selective hydrogenation of α, β-unsaturated aldehydes/ketones in the last decade, with emphasis on the design strategy, conformational relationship, and catalytic mechanism, aiming to provide new ideas for the design of targeted catalytic systems for the selective hydrogenation of α, β-unsaturated aldehydes/ketones.
  • 加载中
    1. [1]

      HU Z, SHI S L, WANG L, CHEN S J, YOU Y S, WANG S H, CHEN C. MOF-derived AgCo alloy nanoparticle protected by mesoporous carbon as chemoselective catalyst for hydrogenation of citral[J]. Appl. Surf. Sci., 2020, 528: 146992  doi: 10.1016/j.apsusc.2020.146992

    2. [2]

      IDE M S, HAO B, NEUROCK M, DAVIS R J. Mechanistic insights on the hydrogenation of α, β-unsaturated ketones and aldehydes to unsaturated alcohols over metal catalysts[J]. ACS Catal., 2012, 2(4): 671-683  doi: 10.1021/cs200567z

    3. [3]

      LIANG Y, TANG Q, LIU L, WANG D S, DONG J X. Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes[J]. Appl. Catal. B‒Environ. Energy, 2023, 333: 122783  doi: 10.1016/j.apcatb.2023.122783

    4. [4]

      NIDHI G, HARI P S, PARDEEP D, BASKER S. Methanol as a hydrogen source: Room-temperature highly-selective transfer hydrogenation of α, β-unsaturated ketones[J]. Chem. Commun., 2022, 58(71): 9930-9933  doi: 10.1039/D2CC03597A

    5. [5]

      WANG K, NIU S S, TANG W J, XUE D, XIAO J L, LI H F, WANG C. Ru-catalyzed asymmetric hydrogenation of α, β-unsaturated ketones via a hydrogenation/isomerization cascade[J]. Chem. Commun., 2024, 60(32): 4338-4341  doi: 10.1039/D4CC00356J

    6. [6]

      CUI H S, LIAO X Q, REN Y F, ZHOU Y, XIAO J, DENG R J, LV Y, LIU H J, LIU P L, YANG H. Highly selective transfer hydrogenation of α, β-unsaturated aldehydes by frustrated Lewis pairs (FLPs) on oxygen-defect-rich Co3O4@NC[J]. J. Catal., 2023, 428: 115126  doi: 10.1016/j.jcat.2023.115126

    7. [7]

      CUI H S, ZHONG L H, LV Y, HAO F, LIU P L, XIONG W, XIONG S F, LIU H J, LUO H A. A facile synthesis of in-situ formed amorphous zirconia catalysts for efficient transfer hydrogenation of unsaturated aldehydes[J]. Fuel, 2022, 317: 123551  doi: 10.1016/j.fuel.2022.123551

    8. [8]

      CHEN J W, XIA Y M, LING Y X, LIU X H, LI S Y, YIN X, ZHANG L P, LIANG M H, YAN Y M, ZHENG Q, CHEN W X, GUO Y J, YUAN E H, HU G F, ZHOU X L, WANG L Y. Zn single-atom catalysts enable the catalytic transfer hydrogenation of α, β-unsaturated aldehydes[J]. Nano Lett., 2024, 24(17): 5197-5205  doi: 10.1021/acs.nanolett.4c00512

    9. [9]

      DENG M Y, WANG D S, LI Y D. Rational design of catalysts for heterogeneous selective hydrogenation of unsaturated aldehydes/ketones: From nanoparticles to single atoms[J]. Appl. Catal. A‒Gen., 2023, 666: 119423  doi: 10.1016/j.apcata.2023.119423

    10. [10]

      BONITA Y, JAIN V, GENG F, O′CONNELL T P, RAMOS N X, RAI N, HICKS J C. Hydrogenation of cinnamaldehyde to cinnamyl alcohol with metal phosphides: Catalytic consequences of product and pyridine doping[J]. Appl. Catal. B‒Environ. Energy, 2020, 277: 119272  doi: 10.1016/j.apcatb.2020.119272

    11. [11]

      ZHANG X, HAN M M, LIU G Q, WANG G Z, ZHANG Y X, ZHANG H M, ZHAO H J. Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions[J]. Appl. Catal. B‒Environ. Energy, 2019, 244: 899-908  doi: 10.1016/j.apcatb.2018.12.025

    12. [12]

      ZHOU Y Y, CHEN C, LI Q L, LIU Y B, WEI T, LIU Y Z, ZENG Z B, BRADSHAW D, ZHANG B, HUO J. Precise control of selective hydrogenation of α, β-unsaturated aldehydes in water mediated by ammonia borane[J]. Appl. Catal. B‒Environ. Energy, 2022, 311: 121348  doi: 10.1016/j.apcatb.2022.121348

    13. [13]

      CHENG S B, LEI Q, DENG C, LIANG L L, CHEN Y, MENG H W, LEI W X, CHEN H L. Mild and selective transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over Cu/ZnO/Al2O3 with methanediol as the hydrogen donor[J]. Green Chem., 2024, 26(12): 7132-7139  doi: 10.1039/D4GC00160E

    14. [14]

      ZHU Y H, ZHANG B Z, SHI S L, BO Z T, YUAN M W, XU Y, XIAO W M, WANG S H, CHEN C. Targeted electron transfer effect of enzyme-like Co-NX catalysts for enhanced C=O hydrogenation[J]. Chem. Eng. J., 2024, 488: 151199  doi: 10.1016/j.cej.2024.151199

    15. [15]

      YAO W, CHEN J M, WANG Y J, FANG R Q, QIN Z, YANG X F, CHEN L Y, LI Y W. Nitrogen-doped carbon composites with ordered macropores and hollow walls[J]. Angew. Chem. ‒Int. Edit., 2021, 60(44): 23729-23734  doi: 10.1002/anie.202108396

    16. [16]

      CAI J N, LIU Y Y, SUN Z C, WANG Y, WANG A J. Solvent effect on the catalytic performance of cinnamaldehyde hydrogenation over Pt/MIL-100(Fe)[J]. Chem. J. Chinese Universities, 2024, 45(2): 20230442

    17. [17]

      WANG Z W, KANG Y Y, SHI Y Z, LIU C, LIU Y N, LIU J, BI J H, WU L. Selective coordination activation regulating the selectivity for photocatalytic hydrogenation of α, β-unsaturated aldehyde over Pd/MIL-100(FeaCub)[J]. Appl. Catal. B‒Environ. Energy, 2024, 340: 123162  doi: 10.1016/j.apcatb.2023.123162

    18. [18]

      ZHOU P, LI L B, MOSALI V S S, CHEN Y, LUAN P, GU Q F, TURNER D R, HUANG L, ZHANG J. Electrochemical hydrogenation of furfural in aqueous acetic acid media with enhanced 2-methylfuran selectivity using CuPd bimetallic catalysts[J]. Angew. Chem. ‒Int. Edit., 2022, 61(13): e202117809  doi: 10.1002/anie.202117809

    19. [19]

      WANG T J, XIN Y, CHEN B F, ZHANG B, LUAN S, DONG M H, WU Y X, CHEN X M, LIU Y, LIU H Z, HAN B X. Selective hydrodeoxygenation of α, β-unsaturated carbonyl compounds to alkenes[J]. Nat. Commun., 2024, 15(1): 2166  doi: 10.1038/s41467-024-46383-9

    20. [20]

      ZHOU S J, YANG Y S, SHEN T Y, YIN P, WANG L, REN Z, ZHENG L R, WANG B, YAN H, WEI M. Highly selective hydrogenation of unsaturated aldehydes in aqueous phase[J]. ACS Appl. Mater. Interfaces, 2024, 16(11): 13685-13696  doi: 10.1021/acsami.3c17806

    21. [21]

      VALEKAR A H, LEE M, YOON J W, KWAK J, HONG D Y, OH K R, CHA G Y, KWON Y U, JUNG J, CHANG J S, HWANG Y K. Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr-MOFs: Exploring the role of metal node coordination and modification[J]. ACS Catal., 2020, 10(6): 3720-3732  doi: 10.1021/acscatal.9b05085

    22. [22]

      ZAHID M, ISMAIL A, SOHAIL M, ZHU Y J. Improving selective hydrogenation of carbonyls bond in α, β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH2[J]. J. Colloid Interface Sci., 2022, 628(Part B): 141-152

    23. [23]

      LV Y, HAN M M, GONG W B, WANG D D, CHEN C, WANG G Z, ZHANG H M, ZHAO H J. Fe-Co alloyed nanoparticles catalyzing efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water[J]. Angew. Chem. ‒Int. Edit., 2020, 59(52): 23521-23526  doi: 10.1002/anie.202009913

    24. [24]

      LIU Y J, ZHANG D H, LI X C, DENG S J, ZHAO D, ZHANG N, CHEN C. Construction of highly-dispersed and composition-adjustable CoxN in stable Co@CoxN@C nanocomposite catalysts via a dual-ligand-MOF strategy for the selective hydrogenation of citral[J]. Appl. Surf. Sci., 2020, 505: 144387  doi: 10.1016/j.apsusc.2019.144387

    25. [25]

      TIAN Z, CHEN D L, HE T, YANG P Y, WANG F F, ZHONG Y J, ZHU W D. Theoretical evidence on the confinement effect of Pt@UiO-66-NH2 for cinnamaldehyde hydrogenation[J]. J. Phys. Chem. C, 2019, 123(36): 22114-22122  doi: 10.1021/acs.jpcc.9b02547

    26. [26]

      CUI H S, LIU S H, LV Y, WU S T, WANG L P, HAO F, LIU P L, XIONG W, LUO H A. Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core-shell MOFs nanoreactor: Identification of the formed metal-N as the structure of an active site[J]. J. Catal., 2020, 381: 468-481  doi: 10.1016/j.jcat.2019.11.024

    27. [27]

      LIU X M, CHENG S J, LONG J L, ZHANG W, LIU X H, WEI D P. MOFs-derived Co@CN bi-functional catalysts for selective transfer hydrogenation of α, β-unsaturated aldehydes without use of base additives[J]. Mater. Chem. Front., 2017, 1(10): 2005-2012  doi: 10.1039/C7QM00189D

    28. [28]

      KANG Y Y, WANG Z W, SHI Y Z, GUO B B, WU L. Synthesis of aluminum doped MIL-100(Fe) compounds for the one-pot photocatalytic conversion of cinnamaldehyde and benzyl alcohol to the corresponding alcohol and aldehyde under anaerobic conditions[J]. J. Catal., 2022, 406: 184-192  doi: 10.1016/j.jcat.2022.01.010

    29. [29]

      LUNEAU M, LIM J S, PATEL D A, SYKES E C H, FRIEND C M, SAUTET P. Guidelines to achieving high selectivity for the hydrogenation of α, β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: A review[J]. Chem. Rev., 2020, 120(23): 12834-12872  doi: 10.1021/acs.chemrev.0c00582

    30. [30]

      ZHANG J, GAO M T, WANG R Y, LI X C, WANG J, LI S Y, GAO K M, LI J, WANG Y W, ZHENG Z F. Bifunctional role of oxygen vacancy in LDH supported Au nanoparticles catalyst for selective photocatalytic hydrogenation of cinnamaldehyde[J]. Fuel, 2024, 365: 131235  doi: 10.1016/j.fuel.2024.131235

    31. [31]

      KENNEDY G, MELAET G, HAN H L, RALSTON W T, SOMORJAI G A. In situ spectroscopic investigation into the active sites for crotonaldehyde hydrogenation at the Pt nanoparticle-Co3O4 interface[J]. ACS Catal., 2016, 6(10): 7140-7147  doi: 10.1021/acscatal.6b01640

    32. [32]

      KENNEDY G, BAKER L R, SOMORJAI G A. Selective amplification of C=O bond hydrogenation on Pt/TiO2: Catalytic reaction and sum-frequency generation vibrational spectroscopy studies of crotonaldehyde hydrogenation[J]. Angew. Chem. ‒Int. Edit., 2014, 53(13): 3405-3408  doi: 10.1002/anie.201400081

    33. [33]

      LO W S, CHOU L Y, YOUNG A P, REN C H, GOH T W, WILLIAMS B P, LI Y, CHEN S Y, ISMAIL M N, HUANG W Y, TSUNG C K. Probing the interface between encapsulated nanoparticles and metal-organic frameworks for catalytic selectivity control[J]. Chem. Mater., 2021, 33(6): 1946-1953  doi: 10.1021/acs.chemmater.0c03007

    34. [34]

      YUAN Q Q, ZHANG D M, VAN HAANDEL L, YE F Y, XUE T, HENSEN E J M, GUAN Y J. Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs[J]. J. Mol. Catal. A‒Chem., 2015, 406: 58-64  doi: 10.1016/j.molcata.2015.05.015

    35. [35]

      ZHANG N, SHAO Q, WANG P T, ZHU X, HUANG X Q. Porous Pt-Ni nanowires within in situ generated metal-organic frameworks for highly chemoselective cinnamaldehyde hydrogenation[J]. Small, 2018, 14(19): e1704318  doi: 10.1002/smll.201704318

    36. [36]

      LIU Q L, LIU Q, CHEN Y R, LI Y L, SU H, LIU Q H, LI G Q. Ir nanoclusters confined within hollow MIL-101(Fe) for selective hydrogenation of α, β-unsaturated aldehyde[J]. Chin. Chem. Lett., 2022, 33(1): 374-377  doi: 10.1016/j.cclet.2021.06.047

    37. [37]

      ZHANG W L, SHI W X, JI W L, WU H B, GU Z D, WANG P, LI X H, QIN P S, ZHANG J, FAN Y, WU T Y, FU Y, ZHANG W N, HUO F W. Microenvironment of MOF channel coordination with Pt NPs for selective hydrogenation of unsaturated aldehydes[J]. ACS Catal., 2020, 10(10): 5805-5813  doi: 10.1021/acscatal.0c00682

    38. [38]

      LAN X, WANG T. Highly selective catalysts for the hydrogenation of unsaturated aldehydes: A review[J]. ACS Catal., 2020, 10(4): 2764-2790  doi: 10.1021/acscatal.9b04331

    39. [39]

      PLESSERS E, DE VOS D E, ROEFFAERS M B J. Chemoselective reduction of α, β-unsaturated carbonyl compounds with UiO-66 materials[J]. J. Catal., 2016, 340: 136-143  doi: 10.1016/j.jcat.2016.05.013

    40. [40]

      UMEMURA A, DIRING S, FURUKAWA S, UEHARA H, TSURUOKA T, KITAGAWA S. Morphology design of porous coordination polymer crystals by coordination modulation[J]. J. Am. Chem. Soc., 2011, 133(39): 15506-15513  doi: 10.1021/ja204233q

    41. [41]

      SHI Y X, ZHU B B, GUO X T, LI W T, MA W Z, WU X Y, PANG H. MOF-derived metal sulfides for electrochemical energy applications[J]. Energy Storage Mater., 2022, 51: 840-872  doi: 10.1016/j.ensm.2022.07.027

    42. [42]

      CUI H S, ZHONG L H, LIAO X Q, HAO F, XIONG W, LIU H J, LUO H, LIU P L, LV Y. Highly efficient chemoselective hydrogenation of unsaturated aldehydes catalyzed by hydrophobically modified core-shell defective ZIFs: Frustrated Lewis pair catalysis[J]. J. Catal., 2023, 420: 23-43  doi: 10.1016/j.jcat.2023.02.012

    43. [43]

      LIU Q L, LI Y L, FAN Y A, SU C Y, LI G Q. Chemoselective hydrogenation of α, β-unsaturated aldehydes over Rh nanoclusters confined in a metal-organic framework[J]. J. Mater. Chem. A, 2020, 8(22): 11442-11447  doi: 10.1039/D0TA01845G

    44. [44]

      LIU H L, LI Z, LI Y W. Chemoselective hydrogenation of cinnamaldehyde over a Pt-Lewis acid collaborative catalyst under ambient conditions[J]. Ind. Eng. Chem. Res., 2015, 54(5): 1487-1497  doi: 10.1021/ie504357r

    45. [45]

      BAKURU V R, KALIDINDI S B. Synergistic hydrogenation over palladium through the assembly of MIL-101(Fe) MOF over palladium nanocubes[J]. Chem. ‒Eur. J., 2017, 23(65): 16456-16459  doi: 10.1002/chem.201704119

    46. [46]

      ZHAO M T, YUAN K, WANG Y, LI G D, GUO J, GU L, HU W P, ZHAO H J, TANG Z Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions[J]. Nature, 2016, 539(7627): 76-80  doi: 10.1038/nature19763

    47. [47]

      LAN X C, XUE K Z, WANG T F. Combined synergetic and steric effects for highly selective hydrogenation of unsaturated aldehyde[J]. J. Catal., 2019, 372: 49-60  doi: 10.1016/j.jcat.2019.02.022

    48. [48]

      SHI Y Z, WU T K, WANG Z W, LIU C, BI J H, WU L. Photocatalytic precise hydrogenation of furfural over ultrathin Pt/NiMg-MOF-74 nanosheets: Synergistic effect of surface optimized Ni sites and Pt clusters[J]. Appl. Surf. Sci., 2023, 616: 156553  doi: 10.1016/j.apsusc.2023.156553

    49. [49]

      LI Y, LO W S, ZHANG F R, SI X M, CHOU L Y, LIU X Y, WILLIAMS B P, LI Y H, JUNG S H, HSU Y S, LIAO F S, SHIEH F K, ISMAIL M N, HUANG W Y, TSUNG C K. Creating an aligned interface between nanoparticles and MOFs by concurrent replacement of capping agents[J]. J. Am. Chem. Soc., 2021, 143(13): 5182-5190  doi: 10.1021/jacs.1c01357

    50. [50]

      STEPHENSON C J, WHITFORD C L, STAIR P C, FARHA O K, HUPP J T. Chemoselective hydrogenation of crotonaldehyde catalyzed by an Au@ZIF-8 composite[J]. Chemcatchem, 2016, 8(4): 855-860  doi: 10.1002/cctc.201501171

    51. [51]

      LAN X C, HUANG N, WANG J F, WANG T F. Geometric effect in the highly selective hydrogenation of 3-methylcrotonaldehyde over Pt@ZIF-8 core-shell catalysts[J]. Catal. Sci. Technol., 2017, 7(12): 2601-2608  doi: 10.1039/C7CY00353F

    52. [52]

      YANG L X, WU H Q, GAO H Y, LI J Q, TAO Y, YIN W H, LUO F. Hybrid catalyst of a metal-organic framework, metal nanoparticles, and oxide that enables strong steric constraint and metal-support interaction for the highly effective and selective hydrogenation of cinnamaldehyde[J]. Inorg. Chem., 2018, 57(20): 12461-12465  doi: 10.1021/acs.inorgchem.8b01922

    53. [53]

      NAGENDIRAN A, PASCANU V, BERMEJO GOMEZ A, GONZALEZ MIERA G, TAI C W, VERHO O, MARTIN-MATUTE B, BACKVALL J E. Mild and selective catalytic hydrogenation of the C=C bond in α, β-unsaturated carbonyl compounds using supported palladium nanoparticles[J]. Chem. ‒Eur. J., 2016, 22(21): 7184-7189  doi: 10.1002/chem.201600878

    54. [54]

      LONG Y, SONG S Y, LI J, WU L L, WANG Q S, LIU Y, JIN R C, ZHANG H J. Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect[J]. ACS Catal., 2018, 8(9): 8506-8512  doi: 10.1021/acscatal.8b01851

    55. [55]

      GUO Z Y, XIAO C X, MALIGAL-GANESH R V, ZHOU L, GOH T W, LI X L, TESFAGABER D, THIEL A, HUANG W Y. Pt nanoclusters confined within metal organic framework cavities for chemoselective cinnamaldehyde hydrogenation[J]. ACS Catal., 2014, 4(5): 1340-1348  doi: 10.1021/cs400982n

    56. [56]

      ZHOU A W, DOU Y B, ZHOU J, LI J R. Rational localization of metal nanoparticles in yolk-shell MOFs for enhancing catalytic performance in selective hydrogenation of cinnamaldehyde[J]. ChemSusChem, 2020, 13(1): 205-211  doi: 10.1002/cssc.201902272

    57. [57]

      XU T T, SUN K, GAO D W, LI C C, HU X, CHEN G Z. Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions[J]. Chem. Commun., 2019, 55(53): 7651-7654  doi: 10.1039/C9CC02727K

    58. [58]

      CHEN B, YANG X, XU Y N, HU S Y, ZENG X L, LIU Y P, TAN K B, HUANG J L, ZHAN G W. Semi-hydrogenation of α, β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al2O3 to Al-TCPP[J]. Nanoscale, 2022, 14(42): 15749-15759  doi: 10.1039/D2NR04474A

    59. [59]

      YANG Q P, GAO D W, LI C S, WANG S, HU X, ZHENG G X, CHEN G Z. Highly dispersed Pt on partial deligandation of Ce-MOFs for furfural selective hydrogenation[J]. Appl. Catal. B‒Environ. Energy, 2023, 328: 122458  doi: 10.1016/j.apcatb.2023.122458

    60. [60]

      NING L M, LIAO S Y, DONG C Q, ZHANG M T, GU W, LIU X. Rare earth oxide anchored platinum catalytic site coated zeolitic imidazolate frameworks toward enhancing selective hydrogenation[J]. ACS Appl. Mater. Interfaces, 2020, 12(6): 7198-7205  doi: 10.1021/acsami.9b19867

    61. [61]

      XUE K Z, LAN X C, WANG J F, WANG T F. Synthesis of Pt@MAF-6 as a steric effect catalyst for selective hydrogenation of cinnamaldehyde[J]. Catal. Lett., 2020, 150(11): 3234-3242  doi: 10.1007/s10562-020-03212-0

    62. [62]

      LIU H L, CHANG L N, CHEN L Y, LI Y W. Nanocomposites of platinum/metal-organic frameworks coated with metal-organic frameworks with remarkably enhanced chemoselectivity for cinnamaldehyde hydrogenation[J]. Chemcatchem, 2016, 8(5): 946-951  doi: 10.1002/cctc.201501256

    63. [63]

      YUAN K, SONG T Q, WANG D W, ZHANG X T, GAO X, ZOU Y, DONG H L, TANG Z Y, HU W P. Effective and selective catalysts for cinnamaldehyde hydrogenation: Hydrophobic hybrids of metal- organic frameworks, metal nanoparticles, and micro- and mesoporous polymers[J]. Angew. Chem. ‒Int. Edit., 2018, 57(20): 5708-5713  doi: 10.1002/anie.201801289

    64. [64]

      GUO Q Y, WANG Z, FENG X, FAN Y, LIN W. Generation and stabilization of a dinickel catalyst in a metal-organic framework for selective hydrogenation reactions[J]. Angew. Chem. ‒Int. Edit., 2023, 62(35): e202306905  doi: 10.1002/anie.202306905

    65. [65]

      YANGCHENG R X, LI J W, HE J D, ZHENG Y X, YU H J, CHEN C L, WANG J J. Carboxyl-decorated UiO-66 supporting Pd nanoparticles for efficient room-temperature hydrodeoxygenation of lignin derivatives[J]. Small, 2024: e2309821

    66. [66]

      GONG W B, LIN Y, CHEN C, AL-MAMUN M, LU H S, WANG G Z, ZHANG H M, ZHAO H J. Nitrogen-doped carbon nanotube confined Co-Nx sites for selective hydrogenation of biomass-derived compounds[J]. Adv. Mater., 2019, 31(11): 1808341  doi: 10.1002/adma.201808341

    67. [67]

      ZHAO J B, LI X M, ZHANG M, XU Z, QIN X M, LIU Y F, HAN L F, LI G. Enhancing the catalytic performance of Co-N-C derived from ZIF-67 by mesoporous silica encapsulation for chemoselective hydrogenation of furfural[J]. Nanoscale, 2023, 15(9): 4612-4619  doi: 10.1039/D2NR05831F

    68. [68]

      CHEN H R, SHEN K, TAN Y P, LI Y W. Multishell hollow metal/ nitrogen/carbon dodecahedrons with precisely controlled architectures and synergistically enhanced catalytic properties[J]. ACS Nano, 2019, 13(7): 7800-7810  doi: 10.1021/acsnano.9b01953

    69. [69]

      XU J Y, HAN X Y, ZHU L H, WANG W Z, RUAN L N, YANG Z Q, YE H Q, CHEN B H. Revealing the intrinsic relationship between nano/electronic structure of CuCo/NC (NC derived from ZIF-67) and their catalytic performance for furfural selective hydrogenation[J]. J. Catal., 2025, 447: 116140  doi: 10.1016/j.jcat.2025.116140

    70. [70]

      ZHAO H H, SONG H L, CHOU L J. Nickel nanoparticles supported on MOF-5: Synthesis and catalytic hydrogenation properties[J]. Inorg. Chem. Commun., 2012, 15: 261-265  doi: 10.1016/j.inoche.2011.10.040

    71. [71]

      YE H S, ZHAO H Y, JIANG Y Y, LIU H L, HOU Z Y. Catalytic transfer hydrogenation of the C=O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles[J]. ACS Appl. Nano Mater., 2020, 3(12): 12260-12268  doi: 10.1021/acsanm.0c02735

    72. [72]

      ZHOU Y Y, LI Z H, LIU Y B, HUO J, CHEN C, LI Q L, NIU S Y, WANG S Y. Regulating hydrogenation chemoselectivity of α, β-unsaturated aldehydes by combination of transfer and catalytic hydrogenation[J]. ChemSusChem, 2020, 13(7): 1746-1750  doi: 10.1002/cssc.201902629

    73. [73]

      DONG S H, LIU Z, LIU R H, CHEN L M, CHEN J Z, XU Y S. Visible-light-induced catalytic transfer hydrogenation of aromatic aldehydes by palladium immobilized on amine-functionalized iron-based metal-organic frameworks[J]. ACS Appl. Nano Mater., 2018, 1(8): 4247-4257  doi: 10.1021/acsanm.8b01039

    74. [74]

      ZHONG L H, LIAO X Q, HUANG H S, LUO H, LV Y, LIU P L. B, N codoped defective reduced graphene oxide as a highly efficient frustrated Lewis pairs catalyst for the selective hydrogenation of α, β-unsaturated aldehydes to unsaturated alcohols[J]. J. Am. Chem. Soc., 2025, 147(4): 3840-3854  doi: 10.1021/jacs.4c17103

    75. [75]

      HAN Y W, YE L, GONG T J, LU X B, FU Y. Porous composite- mediated bimetallic cluster POMs/Zr-MOF for catalytic transfer hydrogenation of biomass-derived aldehydes and ketones[J]. Adv. Funct. Mater., 2024, 34(19): 2315044  doi: 10.1002/adfm.202315044

    76. [76]

      ZHANG M J, YOUNG D J, MA J L, SHAO G Q. Copper􀃬 pyrimidine-2-thiolate cluster-based polymers as bifunctional visible-light-photocatalysts for chemoselective transfer hydrogenation of α, β- unsaturated carbonyls[J]. RSC Adv., 2021, 11(25): 14899-14904  doi: 10.1039/D1RA01102B

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    3. [3]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    4. [4]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    5. [5]

      Danfeng ZhaoJing LinRushuo LiLiang ChuZhaokun WangXiubing HuangGe Wang . Constructing frustrated Lewis pairs on porous Ce-based metal-organic frameworks with improved dicyclopentadiene hydrogenation activity. Chinese Chemical Letters, 2025, 36(7): 110172-. doi: 10.1016/j.cclet.2024.110172

    6. [6]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    7. [7]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    8. [8]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    9. [9]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    10. [10]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    11. [11]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Shanqing YANGLulu WANGQiang ZHANGJiajia LIYilong LITongliang HU . A propane-selective metal-organic framework for inverse selective adsorption propane/propylene separation. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2138-2148. doi: 10.11862/CJIC.20250154

    14. [14]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    15. [15]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    16. [16]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    17. [17]

      Hongzhe GUOSen WANGLu YANGFucheng LIUJiongpeng ZHAOZhaoquan YAO . Highly selective acetylene capture by a pacs-type metal-organic framework constructed using metal-formate complexes as pore partition units. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2157-2164. doi: 10.11862/CJIC.20250179

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

Metrics
  • PDF Downloads(0)
  • Abstract views(30)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return