Citation: Zhiwen HU, Huiying ZHANG, Jiayan ZHOU, Yulong YANG, Ping LI, Zelong CHEN, Weixia DONG, Qifu BAO. Time evolution of in-situ synthesized Bi12TiO20/BaTiO3 heterojunctions and catalytic mechanisms[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(1): 65-77. doi: 10.11862/CJIC.20250172 shu

Time evolution of in-situ synthesized Bi12TiO20/BaTiO3 heterojunctions and catalytic mechanisms

  • Corresponding author: Weixia DONG, weixia_dong@sina.com
  • Received Date: 25 May 2025
    Revised Date: 7 November 2025

Figures(10)

  • To address the issues of high carrier recombination rate and poor photoresponse capability in photocatalysts, a visible-light-responsive Bi12TiO20/BaTiO3 composite piezo-photocatalyst was synthesized in situ by the "shearing effect" of alkaline KOH. The built-in electric field of BaTiO3 was utilized to modulate the photogenerated carrier transport behavior in Bi12TiO20, thereby enhancing charge separation efficiency. The synthesized powders were systematically characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), with particular focus on phase composition and morphological evolution. The time-dependent formation process of Bi12TiO20/BaTiO3 was successfully elucidated. The piezo-photocatalytic degradation reaction rate constant of Bi12TiO20/BaTiO3 for dyes reached 9.76×10-2 min-1, outperforming that of piezocatalysis (2.39×10-2 min-1) and photocatalysis (8.17×10-2 min-1). Furthermore, the enhanced piezo-photocatalytic mechanism was elucidated by combining free radical trapping experiments, electron spin resonance (ESR) spectroscopy, and the band structure of the Bi12TiO20/BaTiO3 heterojunction.
  • 加载中
    1. [1]

      LIU J H, QIU W L, XU M M, THOMAS T J, LIU S Q, YANG M H. Piezocatalytic techniques in environmental remediation[J]. Angew. Chem. ‒Int. Edit., 2023, 62(5): e202213927  doi: 10.1002/anie.202213927

    2. [2]

      ZHENG S, DING B F, QIAN X, YANG Y M, MAO L, ZHENG S K, ZHANG J Y. High efficiency degradation of tetracycline and rhodamine B using Z-type BaTiO3/γ-Bi2O3 heterojunction[J]. Sep. Purif. Technol., 2021, 278: 119666  doi: 10.1016/j.seppur.2021.119666

    3. [3]

      HUANG R, WU J, LIN E Z, KANG Z H, QIN N, BAO D H. A new strategy for large-scale synthesis of Na0.5Bi0.5TiO3 nanowires and their application in piezocatalytic degradation[J]. Nanoscale Adv., 2021, 3(11): 3159-3166  doi: 10.1039/D1NA00024A

    4. [4]

      TU S C, GUO Y X, ZHANG Y H, HU C P, ZHANG T R, MA T Y, HUANG H W. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application[J]. Adv. Funct. Mater., 2020, 30(48): 2005158  doi: 10.1002/adfm.202005158

    5. [5]

      XU X L, WU Z, XIAO L B, JIA Y M, MA J P, WANG F F, WANG L, WANG M S, HUANG H T. Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis[J]. J. Alloy. Compd., 2018, 762: 915-921  doi: 10.1016/j.jallcom.2018.05.279

    6. [6]

      WU J, QIN N, BAO D H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration[J]. Nano Energy, 2018, 45: 44-51  doi: 10.1016/j.nanoen.2017.12.034

    7. [7]

      XU S Y, GUO L M, SUN Q J, WANG Z L. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures[J]. Adv. Funct. Mater., 2019, 29(13): 1808737  doi: 10.1002/adfm.201808737

    8. [8]

      ZHAO W, ZHANG Q, WANG H G, RONG J C, LEI E, DAI Y J. Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect[J]. Nano Energy, 2020, 73: 104783  doi: 10.1016/j.nanoen.2020.104783

    9. [9]

      TANG Q, WU J, KIM D H, FRANCO C, TERZOPOULOU A, VECIANA A, LUIS J P, CHEN X Z, BRADLEY J N, SALVADOR P. Enhanced piezocatalytic performance of BaTiO3 nanosheets with highly exposed {001} facets[J]. Adv. Funct. Mater., 2022, 32(35): 2202180  doi: 10.1002/adfm.202202180

    10. [10]

      ZHANG Y H, SHEN G D, SHENG C H, ZHANG F, FAN W. The effect of piezo-photocatalysis on enhancing the charge carrier separation in BaTiO3/KNbO3 heterostructure photocatalyst[J]. Appl. Surf. Sci., 2021, 562: 150164  doi: 10.1016/j.apsusc.2021.150164

    11. [11]

      YUAN B W, WU J, QIN N, LIN E Z, BAO D H. Enhanced piezocatalytic performance of (Ba, Sr)TiO3 nanowires to degrade organic pollutants[J]. ACS Appl. Nano Mater., 2018, 1(9): 5119-5127  doi: 10.1021/acsanm.8b01206

    12. [12]

      ZHOU X F, WU S H, LI C B, YAN F, BAI H R, SHEN B, ZENG H R, ZHAI J W. Piezophototronic effect in enhancing charge carrier separation and transfer in ZnO/BaTiO3 heterostructures for high- efficiency catalytic oxidation[J]. Nano Energy, 2019, 66: 104127  doi: 10.1016/j.nanoen.2019.104127

    13. [13]

      WU J R, WANG W W, TIAN Y, SONG C X, QIU H, XUE H. Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants[J]. Nano Energy, 2020, 77: 105122  doi: 10.1016/j.nanoen.2020.105122

    14. [14]

      LIU X T, SHEN X F, SA B S, ZHANG Y G, LI X, XUE H. Piezotronic-enhanced photocatalytic performance of heterostructured BaTiO3/SrTiO3 nanofibers[J]. Nano Energy, 2021, 89: 106391  doi: 10.1016/j.nanoen.2021.106391

    15. [15]

      WANG L L, LI H, ZHANG S F, LONG Y J, LI L X, ZHENG Z G, WU S L, ZHOU L T, HEI Y R, LUO L J, JIANG F Z. One-step synthesis of Bi4Ti3O12/Bi2O3/Bi12TiO20 spherical ternary heterojunctions with enhanced photocatalytic properties via sol-gel method[J]. Solid State Sci., 2020, 100: 106098  doi: 10.1016/j.solidstatesciences.2019.106098

    16. [16]

      RAO F, ZHU G Q, ZHANG W B, GAO J Z, ZHANG F C, HUANG Y, HOJAMBERDIEV M. In-situ generation of oxygen vacancies and metallic bismuth from (BiO)2CO3 via N2-assisted thermal-treatment for efficient selective photocatalytic NO removal[J]. Appl. Catal. B‒Environ. Energy, 2021, 281: 119481  doi: 10.1016/j.apcatb.2020.119481

    17. [17]

      NI Y H, ZHENG H S, XIANG N N, YUAN K F, HONG J M. Simple hydrothermal synthesis and photocatalytic performance of coral-like BaTiO3 nanostructures[J]. RSC Adv., 2015, 5: 7245-7252  doi: 10.1039/C4RA13642J

    18. [18]

      LI M, GU L L, LI T, HAO S J, TAN F R, CHEN D L, ZHU D L, XU Y J, SUN C H, YANG Z Y. TiO2-seeded hydrothermal growth of spherical BaTiO3 nanocrystals for capacitor energy-storage application[J]. Crystals, 2020, 10(3): 202  doi: 10.3390/cryst10030202

    19. [19]

      YANG W S, KIM D S, LEE K W, CHOI J H, LEE H H, CHOI G H, LIM J H, CHO H K. Harmonized bronze/anatase/rutile multiphase conjugated TiO2-carbon nanoarchitecture anode from Ti-based metal-organic frameworks for enhanced lithium-ion battery performance[J]. Small Struct., 2025: e202500377, https://doi.org/10.1002/sstr.202500377  doi: 10.1002/sstr.202500377

    20. [20]

      WU J, XU Q, LIN E Z, YUAN B W, QIN N, TAHTIKONDA S K, BAO D H. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3[J]. ACS Appl. Mater. Interfaces, 2018, 10(21): 17842-17849  doi: 10.1021/acsami.8b01991

    21. [21]

      HU Z W, ZHANG H Y, YANG Y L, BAO Q F, DONG W X. Piezotronics-enhanced photocatalytic performance of hierarchical dandelion-like Bi4Ti3O12/BaTiO3 for dye degradation[J]. Sep. Purif. Technol., 2025, 380: 135339

    22. [22]

      YU C Y, TAN M X, LI Y, LIU C B, YIN R W, MENG H M, SU Y J, QIAO L J, BAI Y. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering[J]. J. Colloid Interface Sci., 2021, 596: 288-296  doi: 10.1016/j.jcis.2021.03.040

    23. [23]

      LIU D M, JIN C C, SHAN F K, HE J J, WANG F. Synthesizing BaTiO3 nanostructures to explore morphological influence, kinetics, and mechanism of piezocatalytic dye degradation[J]. ACS Appl. Mater. Interfaces, 2020, 12(15): 17443-17451  doi: 10.1021/acsami.9b23351

    24. [24]

      FANG G L, WANG L H, ZHANG G, YAN X H, WANG D Y. Rapid microwave-assisted sol-gel synthesis and exceptional visible light photocatalytic activities of Bi12TiO20[J]. Ceram. Int., 2018, 44: 16388-16393  doi: 10.1016/j.ceramint.2018.06.048

    25. [25]

      XIE Z S, TANG X L, SHI J F, WANG Y J, YUAN G L, LIU J M. Excellent piezo-photocatalytic performance of Bi4Ti3O12 nanoplates synthesized by molten-salt method[J]. Nano Energy, 2022, 98: 107247  doi: 10.1016/j.nanoen.2022.107247

    26. [26]

      LI Y, LI R, ZHAI Y, HUANG Y, LEE S C, CAO J L. Improved photocatalytic activity of BaTiO3/La2Ti2O7 heterojunction composites via piezoelectric-enhanced charge transfer[J]. Appl. Surf. Sci., 2021, 570: 151146  doi: 10.1016/j.apsusc.2021.151146

    27. [27]

      RAY S K, CHO J, HUR J. A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment[J]. J. Environ. Manage., 2021, 290: 112679  doi: 10.1016/j.jenvman.2021.112679

    28. [28]

      XU S Y LIU Z H, ZHANG M L, GUO L M. Piezotronics enhanced photocatalytic activities of Ag-BaTiO3 plasmonic photocatalysts[J]. J. Alloy. Compd., 2019, 801: 483-488  doi: 10.1016/j.jallcom.2019.06.115

    29. [29]

      CUI Y F, GOLDUP S M, DUNN S. Photodegradation of rhodamine B over Ag modified ferroelectric BaTiO3 under simulated solar light: Pathways and mechanism[J]. RSC Adv., 2015, 5: 30372-30379  doi: 10.1039/C5RA00798D

    30. [30]

      CUI Y F, BRISCOE J, WANG Y Q, TARAKINA N V, DUNN S. Enhanced photocatalytic activity of heterostructured ferroelectric BaTiO3/α-Fe2O3 and the significance of interface morphology control[J]. ACS Appl. Mater. Interfaces, 2017, 9(29): 24518-24526  doi: 10.1021/acsami.7b03523

    31. [31]

      XU X G, LIN X J, YANG F H, HUANG S F, CHENG X. Piezo- photocatalytic activity of Bi0.5Na0.5TiO3@TiO2 composite catalyst with heterojunction for degradation of organic dye molecule[J]. J. Phys. Chem. C, 2020, 124: 24126-24134  doi: 10.1021/acs.jpcc.0c04700

    32. [32]

      LI J Y, WANG H F, REDDY N, ZHU Z J, ZHENG J, WANG W, LIU B J, HU C Y. MOFFeCo/B-CN composites achieve efficient degradation of antibiotics in a non-homogeneous concurrent photocatalytic-persulfate activation system[J]. Sci. Total Environ., 2023, 858: 159795  doi: 10.1016/j.scitotenv.2022.159795

    33. [33]

      LI H D, SANG Y H, CHANG S J, HUANG X, ZHANG Y, YANG R S, JIANG H, LIU H, WANG Z L. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect[J]. Nano Lett., 2015, 15(4): 2372-2379  doi: 10.1021/nl504630j

    34. [34]

      WANG S S, WU Z, CHEN J, MA J P, YING J S, CUI S C, YU S G, HU Y M, ZHAO J H, JIA Y M. Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation[J]. Ceram. Int., 2019, 45: 11703-11708  doi: 10.1016/j.ceramint.2019.03.045

    35. [35]

      KUMAR S, SHARMA M, VAISH R, AHMED S B. Poling effect on piezocatalytic antibacterial and dye degradation activities of BaTiO3 nanoparticles embedded cotton fabric[J]. J. Alloy. Compd., 2023, 938: 168530  doi: 10.1016/j.jallcom.2022.168530

  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    3. [3]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    5. [5]

      Min WANGDehua XINWei ZHANGHaiying YANGYuchun WANGZhaorong LIUMeng SHILe SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109

    6. [6]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    7. [7]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    10. [10]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    13. [13]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    14. [14]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047

    15. [15]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 100020-0. doi: 10.3866/PKU.WHXB202310004

    16. [16]

      Jiangyuan QiuTao YuJunxin ChenWenxuan LiXiaoxuan Zhangjinsheng LiRui GuoZaiyin HuangXuanwen Liu . Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis. Acta Physico-Chimica Sinica, 2026, 42(1): 100157-0. doi: 10.1016/j.actphy.2025.100157

    17. [17]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    18. [18]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    20. [20]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

Metrics
  • PDF Downloads(0)
  • Abstract views(78)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return