Citation: Xiaogang YANG, Xinya ZHANG, Jing LI, Huilin WANG, Min LI, Xiaotian WEI, Xinci WU, Lufang MA. Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167 shu

Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework

Figures(5)

  • One metal-organic framework [Zn3(NTB)2(bipy)]·4H2O (1) with charge transfer characteristic and 3D polyrotaxane structure was synthesized by the reaction of 4, 4′, 4″-nitrilotribenzoic acid (H3NTB) as electron donor, 4, 4′-bipyridine (bipy) as electron acceptor and Zn(NO3)2·6H2O under solvothermal method. Its crystal structure, phase purity, and thermal stability were characterized by X-ray single-crystal diffraction, powder X-ray diffraction, and thermogravimetric analysis. Complex 1 crystallizes in triclinic system, P1 space group with cell parameters: a=1.374 87(15) nm, b=1.376 65(15) nm, c=1.795 50(18) nm, α=86.994(9)°, β=82.384(9)°, γ=64.835(11)°. It emitted bright yellow emission peaking at 575 nm with lifetime of 16.01 ns under room temperature. The temperature- dependent photoluminescence shows that 1 could maintain 92.05% of its initial emission intensity after being heated to 150 ℃, higher than several silicates and borate based inorganic phosphors.
  • 加载中
    1. [1]

      TONZANI S. Lighting technology: Time to change the bulb[J]. Nature, 2009, 459(7245): 312-314

    2. [2]

      PARAYIL R T, GUPTA S K, MODAK B, ABRAHAM M, PATRA G D, JABRI S A, DAS S, MOHAPATRA M. Broadband MgGa2O4∶Cr3+ spinel with high luminescence thermal stability for near-infrared phosphor-converted light-emitting diodes[J]. ACS Appl. Opt. Mater., 2025, 3(3): 798-808

    3. [3]

      HUA M F, LIU S F, ZHOU L, BÜNZLI J C, WU M. Phosphor-converted light-emitting diodes in the marine environment: Current status and future trends[J]. Chem. Sci., 2025, 16(5): 2089-2104

    4. [4]

      YANG X G, CHEN Y J, YIN P P, LI Y, YANG S Y, LI Y M, MA L F. Low thermal quenching of metal halide-based metal-organic framework phosphor for light emitting diodes[J]. Chem. Sci., 2024, 15(35): 14202-14208  doi: 10.1039/D4SC04228J

    5. [5]

      ZHAO M, CAO K, LIU M J, ZHANG J, CHEN R, ZHANG Q Y, XIA Z G. Dual-shelled RbLi(Li3SiO4)2: Eu2+@Al2O3@ODTMS phosphor as a stable green emitter for high-power LED backlights[J]. Angew. Chem. ‒Int. Edit., 2020, 59(31): 12938-12943

    6. [6]

      HU R, LUO X B, ZHENG H, QIN Z, GAN Z Q, WU B L, LIU S. Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating[J]. Opt. Express, 2012, 20(13): 13727-13737

    7. [7]

      TIAN J H, ZHUANG W D. Thermal stability of nitride phosphors for light-emitting diodes[J]. Inorg. Chem. Front., 2021, 8(22): 4933-4954

    8. [8]

      CHEN L, LIN C C, YEH C W, LIU R S. Light converting inorganic phosphors for white light-emitting diodes[J]. Materials, 2010, 3(3): 2172-2195

    9. [9]

      KIM Y H, ARUNKUMAR P, KIM B Y, UNITHRATTIL S, KIM E, MOON S H, HYUN J Y, KIM K H, LEE D, LEE J S, IM W B. A zero-thermal-quenching phosphor[J]. Nat. Mater., 2017, 16: 543-550

    10. [10]

      MA Q C, GUO N, XIN Y M, SHAO B Q. Preparation of zero-thermal-quenching tunable emission bismuth-containing phosphors through the topochemical design of ligand configuration[J]. Inorg. Chem. Front., 2021, 8(17): 4072-4085

    11. [11]

      LENG Z H, ZHANG D, BAI H, HE H B, QING Q, ZHAO J, TANG Z B. A zero-thermal-quenching perovskite-like phosphor with an ultra-narrow-band blue-emission for wide color gamut backlight display applications[J]. J. Mater. Chem. C, 2021, 9(38): 13722-13732

    12. [12]

      YANG X G, ZHANG J R, TIAN X K, QIN J H, ZHANG X Y, MA L F. Enhanced activity of enzyme immobilized on hydrophobic ZIF-8 modified by Ni2+ ions[J]. Angew. Chem. ‒Int. Edit., 2023, 62(7): e202216699

    13. [13]

      WEI X H, CHUN F, CAO Y X, ZHANG X, CHEN J K, XING Z F, FANG Y Z, WANG F. Reversible thermo/hydrochromic luminescence in a Ln-MOF film for anticounterfeiting application[J]. ACS Appl. Opt. Mater., 2025, 3(3): 772-778

    14. [14]

      GENG K S, SUN Y, ZHAO Y P, SHAO Z C, WEI Y, HUANG J, CUI Y, XU X Y, HOU H W. Giant enhancement of optical nonlinearity by manipulating guest molecular stacking modes in metal-organic frameworks[J]. J. Am. Chem. Soc., 2025, 147(11): 9844-9857

    15. [15]

      ZHANG Y A, TIAN Y Y, XU N, CUI P Y, GUO L Y, MA J C, KANG Y F, QIN L, WU F, ZHANG L, HUANG W H. In situ mechanical foaming of hierarchical porous MoC for assembling ultra-light, self-cleaning, heat-insulation, flame-retardant, and infrared-stealth device[J]. Adv. Funct. Mater., 2024, 35(6): 2414910

    16. [16]

      HU J, LAO H X, XU X W, WANG W K, WANG L L, LIU Q Q. In situ meso-tetra (4-carboxyphenyl) porphyrin ligand substitution in Hf-MOF for enhanced catalytic activity and stability in photoredox reactions[J]. Rare Met., 2024, 43: 2682-2694

    17. [17]

      LIU Z Q, GAO Q, SHEN W, XU M F, LI Y X, HOU W L, SHI H W, YUAN Y Z, ADAMS E, LEE H K, TANG S. Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations[J]. Chin. Chem. Lett., 2024, 35(8): 109338

    18. [18]

      ZHANG Y A, CHEN J L, RAZQ F, SU C Y, HOU X H, HUANG W H, ZHANG H G. Polyoxometalate-incorporated host-guest framework derived layered double hydroxide composites for high-performance hybrid supercapacitor[J]. Chin. J. Chem., 2023, 41(1): 75-82  doi: 10.1002/cjoc.202200463

    19. [19]

      XIA Y P, WANG C X, YU M H, BU X H. A unique 3D microporous MOF constructed by cross-linking 1D coordination polymer chains for effectively selective separation of CO2/CH4 and C2H2/CH4[J]. Chin. Chem. Lett., 2021, 32(3): 1153-1156  doi: 10.1016/j.cclet.2020.09.014

    20. [20]

      XIAO X P, LI S J, ZUO L Y, LI R, LI Z W, LIU L J, FAN H T, LI B. Twin S-scheme heterojunction ZnO/UiO-66-NH2@ZnIn2S4 rhombic octahedra for efficient photocatalytic H2 evolution[J]. Adv. Funt. Mater., 2025, 35(31): 2418778  doi: 10.1002/adfm.202418778

    21. [21]

      KARMAKAR A, LI J. Luminescent MOFs (LMOFs): Recent advancement towards a greener WLED technology[J]. Chem. Commun., 2022, 58(77): 10768-10788  doi: 10.1039/D2CC03330E

    22. [22]

      SHELDRICK G M. SADABS, A program for empirical absorption correction of area detector data[CP]. University of Göttingen, Germany, 2008.

    23. [23]

      SHELDRICK G M. SHELXS-2014/7, Program for crystal structure solution[CP]. University of Göttingen, Germany, 2014.

    24. [24]

      SHELDRICK G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008, A64: 112-122

    25. [25]

      DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J. Chem. Phys., 1990, 92(1): 508-517  doi: 10.1063/1.458452

    26. [26]

      DELLEY B. From molecules to solids with the DMol3 approach[J]. J. Chem. Phys., 2000, 113(18): 7756-7764  doi: 10.1063/1.1316015

    27. [27]

      LEE S J, DOUSSOT C, BAUX A, LIU L, JAMESON G B, RICHARDSON C, PAK J J, TROUSSELET, COUDERT F X, TELFER S G. Multicomponent metal-organic frameworks as defect-tolerant materials[J]. Chem. Mater., 2016, 28(1): 368-375  doi: 10.1021/acs.chemmater.5b04306

    28. [28]

      LEE J, SHIZU K, TANAKA H, NAKANOTANI H, YASUDA T, KAJIC H, ADACHI C. Controlled emission colors and singlet-triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters[J]. J. Mater. Chem. C, 2015, 3(10): 2175-2181  doi: 10.1039/C4TC02530J

    29. [29]

      WEN D W, LIU H M, GUO Y, ZENG Q G, WU M M, LIU R S. Disorder-order conversion-induced enhancement of thermal stability of pyroxene near-infrared phosphors for light-emitting diodes[J]. Angew. Chem. ‒Int. Edit., 2022, 61(28): e202204411

    30. [30]

      QIAO J W, ZHOU G J, ZHOU Y Y, ZHANG Q Y, XIA Z G. Divalent europium-doped near-infrared-emitting phosphor for light- emitting diodes[J]. Nat. Commun., 2019, 10: 5267  doi: 10.1038/s41467-019-13293-0

    31. [31]

      FANG M H, HUANG P Y, BAO Z, MAJEWSKA N, LESNIEWSKI T, MAHLIK S, GRINBERG M, LENIEC G, KACZMAREK S M, YANG C W, LU K M, SHEU H S, LIU R S. Penetrating biological tissue using light-emitting diodes with a highly efficient near-infrared ScBO3: Cr3+ phosphor[J]. Chem. Mater., 2020, 32(5): 2166-2171

    32. [32]

      WU S, XIONG P X, LIU Q, XIAO Y, SUN Y S, SONG E H, CHEN Y. Self-activated tungstate phosphor for near-infrared light-emitting diodes[J]. Adv. Opt. Mater., 2022, 10(23): 2201718  doi: 10.1002/adom.202201718

    33. [33]

      CHEN J, LIU Y G, FANG M H, HUANG Z H. Luminescence properties and energy transfer of Eu/Mn-coactivated Mg2Al4Si5O18 as a potential phosphor for white-light LEDs[J]. Inorg. Chem., 2014, 53(21): 11396-11403  doi: 10.1021/ic501057r

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    6. [6]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    7. [7]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    8. [8]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    13. [13]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    14. [14]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    17. [17]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

Metrics
  • PDF Downloads(0)
  • Abstract views(30)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return